Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,735 Bytes
c5e8b9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import gradio as gr
from PIL import Image
import torch
from torchvision import transforms
from transformers import (
CLIPProcessor,
CLIPModel,
CLIPTokenizer,
CLIPTextModelWithProjection,
CLIPVisionModelWithProjection,
CLIPFeatureExtractor,
)
import math
from typing import List
from PIL import Image, ImageChops
import numpy as np
import torch
from diffusers import UnCLIPPipeline
# from diffusers.utils.torch_utils import randn_tensor
from transformers import CLIPTokenizer
from src.priors.prior_transformer import (
PriorTransformer,
) # original huggingface prior transformer without time conditioning
from src.pipelines.pipeline_kandinsky_prior import KandinskyPriorPipeline
from diffusers import DiffusionPipeline
__DEVICE__ = "cpu"
if torch.cuda.is_available():
__DEVICE__ = "cuda"
class Ours:
def __init__(self, device):
text_encoder = (
CLIPTextModelWithProjection.from_pretrained(
"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
projection_dim=1280,
torch_dtype=torch.float16,
)
.eval()
.requires_grad_(False)
)
tokenizer = CLIPTokenizer.from_pretrained(
"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
)
prior = PriorTransformer.from_pretrained(
"ECLIPSE-Community/ECLIPSE_KandinskyV22_Prior",
torch_dtype=torch.float16,
)
self.pipe_prior = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior",
prior=prior,
text_encoder=text_encoder,
tokenizer=tokenizer,
torch_dtype=torch.float16,
).to(device)
self.pipe = DiffusionPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16
).to(device)
def inference(self, text, negative_text, steps, guidance_scale):
gen_images = []
for i in range(1):
image_emb, negative_image_emb = self.pipe_prior(
text, negative_prompt=negative_text
).to_tuple()
image = self.pipe(
image_embeds=image_emb,
negative_image_embeds=negative_image_emb,
num_inference_steps=steps,
guidance_scale=guidance_scale,
).images
gen_images.append(image[0])
return gen_images
selected_model = Ours(device=__DEVICE__)
def get_images(text, negative_text, steps, guidance_scale):
images = selected_model.inference(text, negative_text, steps, guidance_scale)
new_images = []
for img in images:
new_images.append(img)
return new_images[0]
with gr.Blocks() as demo:
gr.Markdown(
"""<h1 style="text-align: center;"><b><i>ECLIPSE</i>: Revisiting the Text-to-Image Prior for Effecient Image Generation</b></h1>
<h1 style='text-align: center;'><a href='https://eclipse-t2i.vercel.app/'>Project Page</a> | <a href='https://eclipse-t2i.vercel.app/'>Paper</a> </h1>
"""
)
with gr.Group():
with gr.Row():
with gr.Column():
text = gr.Textbox(
label="Enter your prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
elem_id="prompt-text-input",
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
with gr.Row():
with gr.Column():
negative_text = gr.Textbox(
label="Enter your negative prompt",
show_label=False,
max_lines=1,
placeholder="Enter your negative prompt",
elem_id="prompt-text-input",
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
with gr.Row():
steps = gr.Slider(label="Steps", minimum=10, maximum=100, value=50, step=1)
guidance_scale = gr.Slider(
label="Guidance Scale", minimum=0, maximum=10, value=7.5, step=0.1
)
with gr.Row():
btn = gr.Button(value="Generate Image", full_width=False)
gallery = gr.Image(
height=512, width=512, label="Generated images", show_label=True, elem_id="gallery"
).style(preview=False, columns=1)
btn.click(
get_images,
inputs=[
text,
negative_text,
steps,
guidance_scale,
],
outputs=gallery,
)
text.submit(
get_images,
inputs=[
text,
negative_text,
steps,
guidance_scale,
],
outputs=gallery,
)
negative_text.submit(
get_images,
inputs=[
text,
negative_text,
steps,
guidance_scale,
],
outputs=gallery,
)
with gr.Accordion(label="Ethics & Privacy", open=False):
gr.HTML(
"""<div class="acknowledgments">
<p><h4>Privacy</h4>
We do not collect any images or key data. This demo is designed with sole purpose of fun and reducing misuse of AI.
<p><h4>Biases and content acknowledgment</h4>
This model will have the same biases as pre-trained CLIP model. </div>
"""
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|