File size: 77,038 Bytes
3d5e231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
import inspect
import json
import math
import os
import re
import shutil
import warnings
from contextlib import contextmanager
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

from nltk import word_tokenize
import numpy as np
import torch
from packaging import version
from torch import nn
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.dataset import Dataset
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data.sampler import RandomSampler, Sampler, SequentialSampler
from tqdm.auto import tqdm, trange
from torch.nn.utils.rnn import pad_sequence
import random

from transformers.data.data_collator import DataCollator, DataCollatorWithPadding, default_data_collator
from transformers.file_utils import is_datasets_available, is_torch_tpu_available
from transformers.integrations import (
    default_hp_search_backend,
    is_comet_available,
    is_optuna_available,
    is_ray_available,
    is_tensorboard_available,
    is_wandb_available,
    run_hp_search_optuna,
    run_hp_search_ray,
)

from transformers.modeling_utils import PreTrainedModel
from transformers.optimization import AdamW, get_linear_schedule_with_warmup, get_constant_schedule_with_warmup
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import (
    PREFIX_CHECKPOINT_DIR,
    BestRun,
    EvalPrediction,
    EvaluationStrategy,
    HPSearchBackend,
    PredictionOutput,
    TrainOutput,
    default_compute_objective,
    default_hp_space,
    set_seed,
)
from transformers.training_args import TrainingArguments
from transformers.utils import logging


_use_native_amp = False
_use_apex = False
EPS = 1e-12
INIT_GUMBEL_TEMP = 5.0

control_lst = ['positive', 'negative', 'neutral']
Control_Temp = {'positive': 3967, 'negative':4633, 'neutral':8500}
control_Map = [torch.LongTensor([3967]), torch.LongTensor([4633]), torch.LongTensor([8500])]
sst_lst = [(0, 2), (1, 3), (4,)]
sst_standard = ["positive", "negative", "very positive", "very negative", "neutral"]
# Control_?Map = {j:i for i, j in enumerate(control_lst)}

# Check if Pytorch version >= 1.6 to switch between Native AMP and Apex
if version.parse(torch.__version__) < version.parse("1.6"):
    from transformers.file_utils import is_apex_available

    if is_apex_available():
        from apex import amp
    _use_apex = True
else:
    _use_native_amp = True
    from torch.cuda.amp import autocast

if is_datasets_available():
    import datasets

if is_torch_tpu_available():
    import torch_xla.core.xla_model as xm
    import torch_xla.debug.metrics as met
    import torch_xla.distributed.parallel_loader as pl

if is_tensorboard_available():
    try:
        from torch.utils.tensorboard import SummaryWriter
    except ImportError:
        from tensorboardX import SummaryWriter

if is_wandb_available():
    import wandb

if is_comet_available():
    import comet_ml

if is_optuna_available():
    import optuna

if is_ray_available():
    from ray import tune


logger = logging.get_logger(__name__)


@contextmanager
def torch_distributed_zero_first(local_rank: int):
    """

    Decorator to make all processes in distributed training wait for each local_master to do something.



    Args:

        local_rank (:obj:`int`): The rank of the local process.

    """
    if local_rank not in [-1, 0]:
        torch.distributed.barrier()
    yield
    if local_rank == 0:
        torch.distributed.barrier()

def helper_token2bpe(offsets):
    full_lst = []
    for example_offset in offsets:
        bpe2token = []
        token2bpe = []
        token_idx = -1
        # print(example_offset)
        for bpe_idx, (a,b) in enumerate(example_offset):
            # print(token2bpe, a, b, bpe_idx)
            if b - a > 0:
                if a == 0:
                    # new token
                    token_idx += 1
                    bpe2token.append(token_idx)
                    token2bpe.append([])
                    token2bpe[-1].append(bpe_idx)
                else:
                    # prev token.
                    bpe2token.append(token_idx)
                    token2bpe[-1].append(bpe_idx)
            else:
                bpe2token.append(None)
        full_lst.append((bpe2token, token2bpe))
    return full_lst

class SequentialDistributedSampler(Sampler):
    """

    Distributed Sampler that subsamples indicies sequentially,

    making it easier to collate all results at the end.



    Even though we only use this sampler for eval and predict (no training),

    which means that the model params won't have to be synced (i.e. will not hang

    for synchronization even if varied number of forward passes), we still add extra

    samples to the sampler to make it evenly divisible (like in `DistributedSampler`)

    to make it easy to `gather` or `reduce` resulting tensors at the end of the loop.

    """

    def __init__(self, dataset, num_replicas=None, rank=None):
        if num_replicas is None:
            if not torch.distributed.is_available():
                raise RuntimeError("Requires distributed package to be available")
            num_replicas = torch.distributed.get_world_size()
        if rank is None:
            if not torch.distributed.is_available():
                raise RuntimeError("Requires distributed package to be available")
            rank = torch.distributed.get_rank()
        self.dataset = dataset
        self.num_replicas = num_replicas
        self.rank = rank
        self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
        self.total_size = self.num_samples * self.num_replicas

    def __iter__(self):
        indices = list(range(len(self.dataset)))

        # add extra samples to make it evenly divisible
        indices += indices[: (self.total_size - len(indices))]
        assert (
            len(indices) == self.total_size
        ), f"Indices length {len(indices)} and total size {self.total_size} mismatched"

        # subsample
        indices = indices[self.rank * self.num_samples : (self.rank + 1) * self.num_samples]
        assert (
            len(indices) == self.num_samples
        ), f"Indices length {len(indices)} and sample number {self.num_samples} mismatched"

        return iter(indices)

    def __len__(self):
        return self.num_samples


def get_tpu_sampler(dataset: Dataset):
    if xm.xrt_world_size() <= 1:
        return RandomSampler(dataset)
    return DistributedSampler(dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal())


class Trainer_Prefix:
    """

    Trainer is a simple but feature-complete training and eval loop for PyTorch,

    optimized for 🤗 Transformers.



    Args:

        model (:class:`~transformers.PreTrainedModel`, `optional`):

            The model to train, evaluate or use for predictions. If not provided, a ``model_init`` must be passed.

        args (:class:`~transformers.TrainingArguments`, `optional`):

            The arguments to tweak for training. Will default to a basic instance of :class:`~transformers.TrainingArguments`

            with the ``output_dir`` set to a directory named `tmp_trainer` in the current directory if not provided.

        data_collator (:obj:`DataCollator`, `optional`):

            The function to use to form a batch from a list of elements of :obj:`train_dataset` or

            :obj:`eval_dataset`. Will default to :func:`~transformers.default_data_collator` if no ``tokenizer`` is

            provided, an instance of :func:`~transformers.DataCollatorWithPadding` otherwise.

        train_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`):

            The dataset to use for training. If it is an :obj:`datasets.Dataset`, columns not accepted by the

            ``model.forward()`` method are automatically removed.

        eval_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`):

             The dataset to use for evaluation. If it is an :obj:`datasets.Dataset`, columns not accepted by the

            ``model.forward()`` method are automatically removed.

        tokenizer (:class:`PreTrainedTokenizerBase`, `optional`):

            The tokenizer used to preprocess the data. If provided, will be used to automatically pad the inputs the

            maximum length when batching inputs, and it will be saved along the model to make it easier to rerun an

            interrupted training or reuse the fine-tuned model.

        model_init (:obj:`Callable[[], PreTrainedModel]`, `optional`):

            A function that instantiates the model to be used. If provided, each call to

            :meth:`~transformers.Trainer.train` will start from a new instance of the model as given by this function.

        compute_metrics (:obj:`Callable[[EvalPrediction], Dict]`, `optional`):

            The function that will be used to compute metrics at evaluation. Must take a

            :class:`~transformers.EvalPrediction` and return a dictionary string to metric values.

        tb_writer (:obj:`SummaryWriter`, `optional`):

            Object to write to TensorBoard.

        optimizers (:obj:`Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR`, `optional`):

            A tuple containing the optimizer and the scheduler to use. Will default to an instance of

            :class:`~transformers.AdamW` on your model and a scheduler given by

            :func:`~transformers.get_linear_schedule_with_warmup` controlled by :obj:`args`.

        kwargs:

            Deprecated keyword arguments.

    """

    def __init__(

        self,

        model: Optional[PreTrainedModel] = None,

        model_gpt2 : Optional[PreTrainedModel] = None,

        args: TrainingArguments = None,

        data_collator: Optional[DataCollator] = None,

        train_dataset: Optional[Dataset] = None,

        eval_dataset: Optional[Dataset] = None,

        tokenizer: Optional["PreTrainedTokenizerBase"] = None,

        model_init: Callable[[], PreTrainedModel] = None,

        compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,

        tb_writer: Optional["SummaryWriter"] = None,

        optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),

        task_mode: Optional[str] = None,

        use_dropout: Optional[bool] = False,

        distill: Optional[bool] = False,

        matching_objective:Optional[str]= None,

        finetuned_gpt2: Optional[PreTrainedModel] = None,

        **kwargs,

    ):
        if args is None:
            logger.info("No `TrainingArguments` passed, using the current path as `output_dir`.")
            args = TrainingArguments("tmp_trainer")
        self.args = args
        # Seed must be set before instantiating the model when using model
        set_seed(self.args.seed)
        assert (
            model is not None or model_init is not None
        ), "You must provide a model to use `Trainer`, either by using the `model` argument or the `model_init` argument."
        assert model_init is None
        self.model = model.to(args.device) if model is not None else None
        self.gpt2 = model_gpt2.to(args.device) if model_gpt2 is not None else None
        default_collator = default_data_collator if tokenizer is None else DataCollatorWithPadding(tokenizer)
        self.data_collator = data_collator if data_collator is not None else default_collator
        self.train_dataset = train_dataset
        self.eval_dataset = eval_dataset
        self.tokenizer = tokenizer
        self.model_init = model_init
        self.compute_metrics = compute_metrics
        self.optimizer, self.lr_scheduler = optimizers
        self.task_mode = task_mode
        self.use_dropout = use_dropout

        self.curr_best_eval = 10000000.

        self.distill = distill
        if self.distill:
            self.matching_objective = matching_objective
            self.finetuned_gpt2 = finetuned_gpt2

        if model_init is not None and (self.optimizer is not None or self.lr_scheduler is not None):
            raise RuntimeError(
                "Passing a `model_init` is incompatible with providing the `optimizers` argument."
                "You should subclass `Trainer` and override the `create_optimizer_and_scheduler` method."
            )
        self.tb_writer = tb_writer
        self.log_history = []
        if "prediction_loss_only" in kwargs:
            warnings.warn(
                "Passing `prediction_loss_only` as a keyword argument is deprecated and won't be possible in a future version. Use `args.prediction_loss_only` instead.",
                FutureWarning,
            )
            self.args.prediction_loss_only = kwargs.pop("prediction_loss_only")
        assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}."

        if tb_writer is None and is_tensorboard_available() and self.is_world_process_zero():
            self.tb_writer = SummaryWriter(log_dir=self.args.logging_dir)
        if not is_tensorboard_available():
            logger.warning(
                "You are instantiating a Trainer but Tensorboard is not installed. You should consider installing it."
            )

        # Will be set to True by `self._setup_loggers()` on first call to `self.log()`.
        self._loggers_initialized = False

        # Create output directory if needed
        if self.is_world_process_zero():
            os.makedirs(self.args.output_dir, exist_ok=True)
        if is_torch_tpu_available():
            # Set an xla_device flag on the model's config.
            # We'll find a more elegant and not need to do this in the future.
            self.model.config.xla_device = True
        if not callable(self.data_collator) and callable(getattr(self.data_collator, "collate_batch", None)):
            self.data_collator = self.data_collator.collate_batch
            warnings.warn(
                (
                    "The `data_collator` should now be a simple callable (function, class with `__call__`), classes "
                    + "with a `collate_batch` are deprecated and won't be supported in a future version."
                ),
                FutureWarning,
            )

        if is_datasets_available():
            if isinstance(train_dataset, datasets.Dataset):
                self._remove_unused_columns(self.train_dataset, description="training")
            if isinstance(eval_dataset, datasets.Dataset):
                self._remove_unused_columns(self.eval_dataset, description="evaluation")

        self.global_step = None
        self.epoch = None
        self.total_flos = None
        if self.args.fp16 and _use_native_amp:
            self.scaler = torch.cuda.amp.GradScaler()
        self.hp_search_backend = None
        self.use_tune_checkpoints = False
        if self.args.label_names is None:
            self.args.label_names = (["labels"]
            )

    def _remove_unused_columns(self, dataset: "datasets.Dataset", description: Optional[str] = None):
        if not self.args.remove_unused_columns:
            return
        # Inspect model forward signature to keep only the arguments it accepts.
        signature = inspect.signature(self.model.forward)
        signature_columns = list(signature.parameters.keys())
        # Labels may be named label or label_ids, the default data collator handles that.
        signature_columns += ["label", "label_ids"]
        columns = [k for k in signature_columns if k in dataset.column_names]
        ignored_columns = list(set(dataset.column_names) - set(signature_columns))
        dset_description = "" if description is None else f"in the {description} set "
        logger.info(
            f"The following columns {dset_description}don't have a corresponding argument in `{self.model.__class__.__name__}.forward` and have been ignored: {', '.join(ignored_columns)}."
        )
        dataset.set_format(type=dataset.format["type"], columns=columns)

    def _get_train_sampler(self) -> Optional[torch.utils.data.sampler.Sampler]:
        if isinstance(self.train_dataset, torch.utils.data.IterableDataset):
            return None
        elif is_torch_tpu_available():
            return get_tpu_sampler(self.train_dataset)
        else:
            return (
                RandomSampler(self.train_dataset)
                if self.args.local_rank == -1
                else DistributedSampler(self.train_dataset)
            )

    def get_train_dataloader(self) -> DataLoader:
        """

        Returns the training :class:`~torch.utils.data.DataLoader`.



        Will use no sampler if :obj:`self.train_dataset` is a :obj:`torch.utils.data.IterableDataset`, a random sampler

        (adapted to distributed training if necessary) otherwise.



        Subclass and override this method if you want to inject some custom behavior.

        """
        if self.train_dataset is None:
            raise ValueError("Trainer: training requires a train_dataset.")
        train_sampler = self._get_train_sampler()

        return DataLoader(
            self.train_dataset,
            batch_size=self.args.train_batch_size,
            sampler=train_sampler,
            collate_fn=self.data_collator,
            drop_last=self.args.dataloader_drop_last,
            num_workers=self.args.dataloader_num_workers,
            worker_init_fn=np.random.seed(self.args.seed)
        )

    def _get_eval_sampler(self, eval_dataset: Dataset) -> Optional[torch.utils.data.sampler.Sampler]:
        if isinstance(eval_dataset, torch.utils.data.IterableDataset):
            return None
        elif is_torch_tpu_available():
            return SequentialDistributedSampler(eval_dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal())
        elif self.args.local_rank != -1:
            return SequentialDistributedSampler(eval_dataset)
        else:
            return SequentialSampler(eval_dataset)

    def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
        """

        Returns the evaluation :class:`~torch.utils.data.DataLoader`.



        Will use no sampler if :obj:`self.eval_dataset` is a :obj:`torch.utils.data.IterableDataset`, a sequential

        sampler (adapted to distributed training if necessary) otherwise.



        Subclass and override this method if you want to inject some custom behavior.



        Args:

            eval_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`):

                If provided, will override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`, columns not

                accepted by the ``model.forward()`` method are automatically removed.

        """
        if eval_dataset is None and self.eval_dataset is None:
            raise ValueError("Trainer: evaluation requires an eval_dataset.")
        elif eval_dataset is not None and is_datasets_available() and isinstance(eval_dataset, datasets.Dataset):
            self._remove_unused_columns(eval_dataset, description="evaluation")
        eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
        eval_sampler = self._get_eval_sampler(eval_dataset)

        return DataLoader(
            eval_dataset,
            sampler=eval_sampler,
            batch_size=self.args.eval_batch_size,
            collate_fn=self.data_collator,
            drop_last=self.args.dataloader_drop_last,
            num_workers=self.args.dataloader_num_workers,
            worker_init_fn=np.random.seed(self.args.seed)
        )

    def get_test_dataloader(self, test_dataset: Dataset) -> DataLoader:
        """

        Returns the test :class:`~torch.utils.data.DataLoader`.



        Will use no sampler if :obj:`test_dataset` is a :obj:`torch.utils.data.IterableDataset`, a sequential

        sampler (adapted to distributed training if necessary) otherwise.



        Subclass and override this method if you want to inject some custom behavior.



        Args:

            eval_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`):

                The test dataset to use. If it is an :obj:`datasets.Dataset`, columns not accepted by the

                ``model.forward()`` method are automatically removed.

        """
        if is_datasets_available() and isinstance(test_dataset, datasets.Dataset):
            self._remove_unused_columns(test_dataset, description="test")
        test_sampler = self._get_eval_sampler(test_dataset)

        # We use the same batch_size as for eval.
        return DataLoader(
            test_dataset,
            sampler=test_sampler,
            batch_size=self.args.eval_batch_size,
            collate_fn=self.data_collator,
            drop_last=self.args.dataloader_drop_last,
            worker_init_fn=np.random.seed(self.args.seed)
        )

    def create_optimizer_and_scheduler(self, num_training_steps: int):
        """

        Setup the optimizer and the learning rate scheduler.



        We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the

        Trainer's init through :obj:`optimizers`, or subclass and override this method in a subclass.

        """
        if self.optimizer is None:
            no_decay = ["bias", "LayerNorm.weight"]
            optimizer_grouped_parameters = [
            {
                "params": [p for n, p in self.model.named_parameters() if (not any(nd in n for nd in no_decay)) and p.requires_grad],
                "weight_decay": self.args.weight_decay,
            },
            {
                "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay) and p.requires_grad],
                "weight_decay": 0.0,
            },
            ]

            self.optimizer = AdamW(
                optimizer_grouped_parameters,
                lr=self.args.learning_rate,
                betas=(self.args.adam_beta1, self.args.adam_beta2),
                eps=self.args.adam_epsilon,
            )


            # for n, p in self.model.named_parameters():
            #     print(n,p.requires_grad)
            print(self.optimizer.state_dict())
        if self.lr_scheduler is None:
            self.lr_scheduler = get_linear_schedule_with_warmup(
                self.optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=num_training_steps
            )


    def setup_wandb(self):
        """

        Setup the optional Weights & Biases (`wandb`) integration.



        One can subclass and override this method to customize the setup if needed. Find more information

        `here <https://docs.wandb.com/huggingface>`__. You can also override the following environment variables:



        Environment:

            WANDB_WATCH:

                (Optional, ["gradients", "all", "false"]) "gradients" by default, set to "false" to disable gradient logging

                or "all" to log gradients and parameters

            WANDB_PROJECT:

                (Optional): str - "huggingface" by default, set this to a custom string to store results in a different project

            WANDB_DISABLED:

                (Optional): boolean - defaults to false, set to "true" to disable wandb entirely

        """
        if hasattr(self, "_setup_wandb"):
            warnings.warn(
                "The `_setup_wandb` method is deprecated and won't be called in a future version, define `setup_wandb` in your subclass.",
                FutureWarning,
            )
            return self._setup_wandb()

        if self.is_world_process_zero():
            logger.info(
                'Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"'
            )
            try:
                combined_dict = {**self.model.config.to_dict(), **self.args.to_sanitized_dict()}
            except AttributeError:
                # in case the model has no config
                combined_dict = {**self.args.to_sanitized_dict()}
            wandb.init(
                project=os.getenv("WANDB_PROJECT", "huggingface"), config=combined_dict, name=self.args.run_name
            )
            # keep track of model topology and gradients, unsupported on TPU
            if not is_torch_tpu_available() and os.getenv("WANDB_WATCH") != "false":
                wandb.watch(
                    self.model, log=os.getenv("WANDB_WATCH", "gradients"), log_freq=max(100, self.args.logging_steps)
                )

    def setup_comet(self):
        """

        Setup the optional Comet.ml integration.



        Environment:

            COMET_MODE:

                (Optional): str - "OFFLINE", "ONLINE", or "DISABLED"

            COMET_PROJECT_NAME:

                (Optional): str - Comet.ml project name for experiments

            COMET_OFFLINE_DIRECTORY:

                (Optional): str - folder to use for saving offline experiments when `COMET_MODE` is "OFFLINE"



        For a number of configurable items in the environment,

        see `here <https://www.comet.ml/docs/python-sdk/advanced/#comet-configuration-variables>`__

        """
        if self.is_world_master():
            comet_mode = os.getenv("COMET_MODE", "ONLINE").upper()
            args = {"project_name": os.getenv("COMET_PROJECT_NAME", "huggingface")}
            experiment = None
            if comet_mode == "ONLINE":
                experiment = comet_ml.Experiment(**args)
                logger.info("Automatic Comet.ml online logging enabled")
            elif comet_mode == "OFFLINE":
                args["offline_directory"] = os.getenv("COMET_OFFLINE_DIRECTORY", "./")
                experiment = comet_ml.OfflineExperiment(**args)
                logger.info("Automatic Comet.ml offline logging enabled; use `comet upload` when finished")
            if experiment is not None:
                experiment._set_model_graph(self.model, framework="transformers")
                experiment._log_parameters(self.args, prefix="args/", framework="transformers")
                experiment._log_parameters(self.model.config, prefix="config/", framework="transformers")

    def num_examples(self, dataloader: DataLoader) -> int:
        """

        Helper to get number of samples in a :class:`~torch.utils.data.DataLoader` by accessing its dataset.

        """
        return len(dataloader.dataset)

    def _setup_loggers(self):
        if self._loggers_initialized:
            return
        if is_wandb_available():
            self.setup_wandb()
        elif os.environ.get("WANDB_DISABLED") != "true":
            logger.info(
                "You are instantiating a Trainer but W&B is not installed. To use wandb logging, "
                "run `pip install wandb; wandb login` see https://docs.wandb.com/huggingface."
            )
        if is_comet_available():
            self.setup_comet()
        elif os.environ.get("COMET_MODE") != "DISABLED":
            logger.info(
                "To use comet_ml logging, run `pip/conda install comet_ml` "
                "see https://www.comet.ml/docs/python-sdk/huggingface/"
            )
        self._loggers_initialized = True

    def _hp_search_setup(self, trial: Union["optuna.Trial", Dict[str, Any]]):
        """ HP search setup code """
        if self.hp_search_backend is None or trial is None:
            return
        params = self.hp_space(trial) if self.hp_search_backend == HPSearchBackend.OPTUNA else trial
        for key, value in params.items():
            if not hasattr(self.args, key):
                raise AttributeError(
                    f"Trying to set {key} in the hyperparameter search but there is no corresponding field in `TrainingArguments`."
                )
            old_attr = getattr(self.args, key, None)
            # Casting value to the proper type
            if old_attr is not None:
                value = type(old_attr)(value)
            setattr(self.args, key, value)
        if self.hp_search_backend == HPSearchBackend.OPTUNA:
            logger.info("Trial:", trial.params)

    def _report_to_hp_search(

        self, trial: Union["optuna.Trial", Dict[str, Any]], epoch: int, metrics: Dict[str, float]

    ):
        if self.hp_search_backend is None or trial is None:
            return
        self.objective = self.compute_objective(metrics)
        if self.hp_search_backend == HPSearchBackend.OPTUNA:
            trial.report(self.objective, epoch)
            if trial.should_prune():
                raise optuna.TrialPruned()
        elif self.hp_search_backend == HPSearchBackend.RAY:
            if self.global_step % self.args.save_steps == 0:
                self._tune_save_checkpoint()
            tune.report(objective=self.objective, **metrics)

    def _tune_save_checkpoint(self):
        if not self.use_tune_checkpoints:
            return
        with tune.checkpoint_dir(step=self.global_step) as checkpoint_dir:
            self.args.output_dir = checkpoint_dir
            output_dir = os.path.join(self.args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.global_step}")
            self.save_model(output_dir)
            if self.is_world_master():
                torch.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))


    def train(self, model_path: Optional[str] = None, trial: Union["optuna.Trial", Dict[str, Any]] = None):
        """

        Main training entry point.



        Args:

            model_path (:obj:`str`, `optional`):

                Local path to the model if the model to train has been instantiated from a local path. If present,

                training will resume from the optimizer/scheduler states loaded here.

            trial (:obj:`optuna.Trial` or :obj:`Dict[str, Any]`, `optional`):

                The trial run or the hyperparameter dictionary for hyperparameter search.

        """
        # This might change the seed so needs to run first.
        self._hp_search_setup(trial)

        # Model re-init
        if self.model_init is not None:
            # Seed must be set before instantiating the model when using model_init.
            set_seed(self.args.seed)
            model = self.model_init()
            self.model = model.to(self.args.device)

            # Reinitializes optimizer and scheduler
            self.optimizer, self.lr_scheduler = None, None

        # Data loader and number of training steps
        train_dataloader = self.get_train_dataloader()
        num_update_steps_per_epoch = len(train_dataloader) // self.args.gradient_accumulation_steps
        num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
        if self.args.max_steps > 0:
            t_total = self.args.max_steps
            num_train_epochs = self.args.max_steps // num_update_steps_per_epoch + int(
                self.args.max_steps % num_update_steps_per_epoch > 0
            )
        else:
            t_total = int(num_update_steps_per_epoch * self.args.num_train_epochs)
            num_train_epochs = self.args.num_train_epochs
            self.args.max_steps = t_total

        self.create_optimizer_and_scheduler(num_training_steps=t_total)

        # Check if saved optimizer or scheduler states exist
        if (
            model_path is not None
            and os.path.isfile(os.path.join(model_path, "optimizer.pt"))
            and os.path.isfile(os.path.join(model_path, "scheduler.pt"))
        ):
            # Load in optimizer and scheduler states
            self.optimizer.load_state_dict(
                torch.load(os.path.join(model_path, "optimizer.pt"), map_location=self.args.device)
            )
            self.lr_scheduler.load_state_dict(torch.load(os.path.join(model_path, "scheduler.pt")))

        model = self.model
        if self.args.fp16 and _use_apex:
            if not is_apex_available():
                raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
            model, self.optimizer = amp.initialize(model, self.optimizer, opt_level=self.args.fp16_opt_level)

        # multi-gpu training (should be after apex fp16 initialization)
        if self.args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

        # Distributed training (should be after apex fp16 initialization)
        if self.args.local_rank != -1:
            model = torch.nn.parallel.DistributedDataParallel(
                model,
                device_ids=[self.args.local_rank],
                output_device=self.args.local_rank,
                find_unused_parameters=True,
            )

        if self.tb_writer is not None:
            self.tb_writer.add_text("args", self.args.to_json_string())
            self.tb_writer.add_hparams(self.args.to_sanitized_dict(), metric_dict={})

        # Train!
        if is_torch_tpu_available():
            total_train_batch_size = self.args.train_batch_size * xm.xrt_world_size()
        else:
            total_train_batch_size = (
                self.args.train_batch_size
                * self.args.gradient_accumulation_steps
                * (torch.distributed.get_world_size() if self.args.local_rank != -1 else 1)
            )
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", self.num_examples(train_dataloader))
        logger.info("  Num Epochs = %d", num_train_epochs)
        logger.info("  Instantaneous batch size per device = %d", self.args.per_device_train_batch_size)
        logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d", total_train_batch_size)
        logger.info("  Gradient Accumulation steps = %d", self.args.gradient_accumulation_steps)
        logger.info("  Total optimization steps = %d", t_total)

        self.global_step = 0
        self.epoch = 0
        self.total_flos = 0
        epochs_trained = 0
        steps_trained_in_current_epoch = 0
        # Check if continuing training from a checkpoint
        if model_path is not None:
            # set global_step to global_step of last saved checkpoint from model path
            try:
                self.global_step = int(model_path.split("-")[-1].split(os.path.sep)[0])
                # print(model, model.module)
                if self.args.n_gpu > 1:
                    self.total_flos = getattr(model.module.config, "total_flos", 0)
                else:
                    self.total_flos = getattr(model.config, "total_flos", 0)

                epochs_trained = self.global_step // num_update_steps_per_epoch
                steps_trained_in_current_epoch = self.global_step % (num_update_steps_per_epoch)

                logger.info("  Continuing training from checkpoint, will skip to saved global_step")
                logger.info("  Continuing training from epoch %d", epochs_trained)
                logger.info("  Continuing training from global step %d", self.global_step)
                logger.info("  Continuing training from %d non-embedding floating-point operations", self.total_flos)
                logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
            except ValueError:
                self.global_step = 0
                self.total_flos = 0
                logger.info("  Starting fine-tuning.")

        tr_loss = torch.tensor(0.0).to(self.args.device)
        logging_loss_scalar = 0.0
        model.zero_grad()
        disable_tqdm = self.args.disable_tqdm or not self.is_local_process_zero()
        train_pbar = trange(epochs_trained, int(np.ceil(num_train_epochs)), desc="Epoch", disable=disable_tqdm)
        for epoch in range(epochs_trained, int(np.ceil(num_train_epochs))):
            if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler):
                train_dataloader.sampler.set_epoch(epoch)

            if is_torch_tpu_available():
                parallel_loader = pl.ParallelLoader(train_dataloader, [self.args.device]).per_device_loader(
                    self.args.device
                )
                epoch_iterator = parallel_loader
            else:
                epoch_iterator = train_dataloader

            # Reset the past mems state at the beginning of each epoch if necessary.
            if self.args.past_index >= 0:
                self._past = None

            epoch_pbar = tqdm(epoch_iterator, desc="Iteration", disable=disable_tqdm)
            for step, inputs in enumerate(epoch_iterator):

                # Skip past any already trained steps if resuming training
                if steps_trained_in_current_epoch > 0:
                    steps_trained_in_current_epoch -= 1
                    epoch_pbar.update(1)
                    continue

                tr_loss += self.training_step(model, inputs)

                self.total_flos += self.floating_point_ops(inputs)

                if (step + 1) % self.args.gradient_accumulation_steps == 0 or (
                    # last step in epoch but step is always smaller than gradient_accumulation_steps
                    len(epoch_iterator) <= self.args.gradient_accumulation_steps
                    and (step + 1) == len(epoch_iterator)
                ):
                    if self.args.fp16 and _use_native_amp:
                        self.scaler.unscale_(self.optimizer)
                        torch.nn.utils.clip_grad_norm_(model.parameters(), self.args.max_grad_norm)
                    elif self.args.fp16 and _use_apex:
                        torch.nn.utils.clip_grad_norm_(amp.master_params(self.optimizer), self.args.max_grad_norm)
                    else:
                        torch.nn.utils.clip_grad_norm_(model.parameters(), self.args.max_grad_norm)

                    if is_torch_tpu_available():
                        xm.optimizer_step(self.optimizer)
                    elif self.args.fp16 and _use_native_amp:
                        self.scaler.step(self.optimizer)
                        self.scaler.update()
                    else:
                        self.optimizer.step()

                    # URGENT
                    self.lr_scheduler.step()
                    model.zero_grad()
                    self.global_step += 1
                    self.epoch = epoch + (step + 1) / len(epoch_iterator)


                    if (self.args.logging_steps > 0 and self.global_step % self.args.logging_steps == 0) or (
                        self.global_step == 1 and self.args.logging_first_step
                    ):
                        logs: Dict[str, float] = {}
                        tr_loss_scalar = tr_loss.item()
                        logs["loss"] = (tr_loss_scalar - logging_loss_scalar) / self.args.logging_steps
                        # backward compatibility for pytorch schedulers
                        logs["learning_rate"] = (
                            self.lr_scheduler.get_last_lr()[0]
                            if version.parse(torch.__version__) >= version.parse("1.4")
                            else self.lr_scheduler.get_lr()[0]
                        )
                        logging_loss_scalar = tr_loss_scalar

                        self.log(logs)

                    # print(self.args.evaluation_strategy == EvaluationStrategy.STEPS )
                    # print(self.global_step % self.args.eval_steps == 0)
                    # print()

                    if (
                        self.args.evaluation_strategy == EvaluationStrategy.STEPS
                        and self.global_step % self.args.eval_steps == 0
                    ):
                        metrics = self.evaluate()
                        self._report_to_hp_search(trial, epoch, metrics)

                        #############################EARLY STOPPING########################
                        if 'lowdata' in self.args.output_dir or 'earlystop' in self.args.output_dir:
                            self.save_based_on_eval = True
                        else:
                            self.save_based_on_eval = False
                        print('if not see a line lowdata: below, then did not go into low data. ')
                        if self.save_based_on_eval and metrics["eval_loss"] < self.curr_best_eval:
                            print('lowdata:', self.global_step, self.curr_best_eval, metrics["eval_loss"],
                                  'perplexity={}'.format(math.exp(metrics["eval_loss"])))
                            self.curr_best_eval = metrics["eval_loss"]
                            if hasattr(model, "module"):
                                assert (
                                        model.module is self.model
                                ), f"Module {model.module} should be a reference to self.model"
                            else:
                                assert model is self.model, f"Model {model} should be a reference to self.model"
                            # Save model checkpoint
                            output_dir_name = os.path.basename(self.args.output_dir)
                            checkpoint_folder = f"{output_dir_name}-{PREFIX_CHECKPOINT_DIR}-{self.global_step}"
                            if self.hp_search_backend is not None and trial is not None:
                                run_id = (
                                    trial.number
                                    if self.hp_search_backend == HPSearchBackend.OPTUNA
                                    else tune.get_trial_id()
                                )
                                checkpoint_folder += f"-run-{run_id}"
                            output_dir = os.path.join(self.args.output_dir, checkpoint_folder)

                            self.store_flos()
                            print('saving to output_dir', output_dir)
                            self.save_model(output_dir)

                            if self.is_world_process_zero():
                                self._rotate_checkpoints(use_mtime=True)
                        #####################################################

                    if self.args.save_steps > 0 and self.global_step % self.args.save_steps == 0:
                        print('saving model at a checkpoint!!')
                        # In all cases (even distributed/parallel), self.model is always a reference
                        # to the model we want to save.
                        if hasattr(model, "module"):
                            assert (
                                model.module is self.model
                            ), f"Module {model.module} should be a reference to self.model"
                        else:
                            assert model is self.model, f"Model {model} should be a reference to self.model"
                        # Save model checkpoint
                        checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.global_step}"
                        if self.hp_search_backend is not None and trial is not None:
                            run_id = (
                                trial.number
                                if self.hp_search_backend == HPSearchBackend.OPTUNA
                                else tune.get_trial_id()
                            )
                            checkpoint_folder += f"-run-{run_id}"
                        output_dir = os.path.join(self.args.output_dir, checkpoint_folder)

                        self.store_flos()

                        self.save_model(output_dir)

                        if self.is_world_process_zero():
                            self._rotate_checkpoints(use_mtime=True)

                        if is_torch_tpu_available():
                            xm.rendezvous("saving_optimizer_states")
                            xm.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                            xm.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                        elif self.is_world_process_zero():
                            torch.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                            torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))

                epoch_pbar.update(1)
                if self.args.max_steps > 0 and self.global_step >= self.args.max_steps:
                    break
            epoch_pbar.close()
            train_pbar.update(1)

            if self.args.evaluation_strategy == EvaluationStrategy.EPOCH:
                metrics = self.evaluate()
                self._report_to_hp_search(trial, epoch, metrics)

            if self.args.tpu_metrics_debug or self.args.debug:
                if is_torch_tpu_available():
                    # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
                    xm.master_print(met.metrics_report())
                else:
                    logger.warning(
                        "You enabled PyTorch/XLA debug metrics but you don't have a TPU "
                        "configured. Check your training configuration if this is unexpected."
                    )
            if self.args.max_steps > 0 and self.global_step >= self.args.max_steps:
                break

        train_pbar.close()
        if self.tb_writer:
            self.tb_writer.close()
        if self.args.past_index and hasattr(self, "_past"):
            # Clean the state at the end of training
            delattr(self, "_past")

        logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n")
        return TrainOutput(self.global_step, tr_loss.item() / self.global_step)

    def hyperparameter_search(

        self,

        hp_space: Optional[Callable[["optuna.Trial"], Dict[str, float]]] = None,

        compute_objective: Optional[Callable[[Dict[str, float]], float]] = None,

        n_trials: int = 20,

        direction: str = "minimize",

        backend: Optional[Union["str", HPSearchBackend]] = None,

        **kwargs

    ) -> BestRun:
        """

        Launch an hyperparameter search using ``optuna`` or ``Ray Tune``. The optimized quantity is determined by

        :obj:`compute_objectie`, which defaults to a function returning the evaluation loss when no metric is provided,

        the sum of all metrics otherwise.



        .. warning::



            To use this method, you need to have provided a ``model_init`` when initializing your

            :class:`~transformers.Trainer`: we need to reinitialize the model at each new run. This is incompatible

            with the ``optimizers`` argument, so you need to subclass :class:`~transformers.Trainer` and override the

            method :meth:`~transformers.Trainer.create_optimizer_and_scheduler` for custom optimizer/scheduler.



        Args:

            hp_space (:obj:`Callable[["optuna.Trial"], Dict[str, float]]`, `optional`):

                A function that defines the hyperparameter search space. Will default to

                :func:`~transformers.trainer_utils.default_hp_space_optuna` or

                :func:`~transformers.trainer_utils.default_hp_space_ray` depending on your backend.

            compute_objective (:obj:`Callable[[Dict[str, float]], float]`, `optional`):

                A function computing the objective to minimize or maximize from the metrics returned by the

                :obj:`evaluate` method. Will default to :func:`~transformers.trainer_utils.default_compute_objective`.

            n_trials (:obj:`int`, `optional`, defaults to 100):

                The number of trial runs to test.

            direction(:obj:`str`, `optional`, defaults to :obj:`"minimize"`):

                Whether to optimize greater or lower objects. Can be :obj:`"minimize"` or :obj:`"maximize"`, you should

                pick :obj:`"minimize"` when optimizing the validation loss, :obj:`"maximize"` when optimizing one or

                several metrics.

            backend(:obj:`str` or :class:`~transformers.training_utils.HPSearchBackend`, `optional`):

                The backend to use for hyperparameter search. Will default to optuna or Ray Tune, depending on which

                one is installed. If both are installed, will default to optuna.

            kwargs:

                Additional keyword arguments passed along to :obj:`optuna.create_study` or :obj:`ray.tune.run`. For

                more information see:



                - the documentation of `optuna.create_study <https://optuna.readthedocs.io/en/stable/reference/alias_generated/optuna.create_study.html#optuna.create_study>`__

                - the documentation of `tune.run <https://docs.ray.io/en/latest/tune/api_docs/execution.html#tune-run>`__



        Returns:

            :class:`transformers.trainer_utils.BestRun`: All the informations about the best run.

        """
        if backend is None:
            backend = default_hp_search_backend()
            if backend is None:
                raise RuntimeError(
                    "At least one of optuna or ray should be installed. "
                    "To install optuna run `pip install optuna`."
                    "To install ray run `pip install ray[tune]`."
                )
        backend = HPSearchBackend(backend)
        if backend == HPSearchBackend.OPTUNA and not is_optuna_available():
            raise RuntimeError("You picked the optuna backend, but it is not installed. Use `pip install optuna`.")
        if backend == HPSearchBackend.RAY and not is_ray_available():
            raise RuntimeError(
                "You picked the Ray Tune backend, but it is not installed. Use `pip install 'ray[tune]'`."
            )
        self.hp_search_backend = backend

        if self.model_init is None:
            raise RuntimeError(
                "To use hyperparameter search, you need to pass your model through a model_init function."
            )

        self.hp_space = default_hp_space[backend] if hp_space is None else hp_space
        self.compute_objective = default_compute_objective if compute_objective is None else compute_objective

        run_hp_search = run_hp_search_optuna if backend == HPSearchBackend.OPTUNA else run_hp_search_ray
        best_run = run_hp_search(self, n_trials, direction, **kwargs)

        self.hp_search_backend = None
        return best_run

    def log(self, logs: Dict[str, float], iterator: Optional[tqdm] = None) -> None:
        """

        Log :obj:`logs` on the various objects watching training.



        Subclass and override this method to inject custom behavior.



        Args:

            logs (:obj:`Dict[str, float]`):

                The values to log.

            iterator (:obj:`tqdm`, `optional`):

                A potential tqdm progress bar to write the logs on.

        """
        # Set up loggers like W&B or Comet ML
        self._setup_loggers()

        if hasattr(self, "_log"):
            warnings.warn(
                "The `_log` method is deprecated and won't be called in a future version, define `log` in your subclass.",
                FutureWarning,
            )
            return self._log(logs, iterator=iterator)

        if self.epoch is not None:
            logs["epoch"] = self.epoch
        if self.total_flos is not None:
            if self.args.local_rank != -1:
                total_flos = distributed_broadcast_scalars([self.total_flos]).sum().item()
            else:
                total_flos = self.total_flos
            if total_flos > 0:
                logs["total_flos"] = self.total_flos
        if self.global_step is None:
            # when logging evaluation metrics without training
            self.global_step = 0
        if self.tb_writer:
            for k, v in logs.items():
                if isinstance(v, (int, float)):
                    self.tb_writer.add_scalar(k, v, self.global_step)
                else:
                    logger.warning(
                        "Trainer is attempting to log a value of "
                        '"%s" of type %s for key "%s" as a scalar. '
                        "This invocation of Tensorboard's writer.add_scalar() "
                        "is incorrect so we dropped this attribute.",
                        v,
                        type(v),
                        k,
                    )
            self.tb_writer.flush()
        if is_wandb_available():
            if self.is_world_process_zero():
                wandb.log(logs, step=self.global_step)
        if is_comet_available():
            if self.is_world_process_zero():
                experiment = comet_ml.config.get_global_experiment()
                if experiment is not None:
                    experiment._log_metrics(logs, step=self.global_step, epoch=self.epoch, framework="transformers")
        output = {**logs, **{"step": self.global_step}}
        if self.is_world_process_zero():
            self.log_history.append(output)
        if iterator is not None:
            iterator.write(output)
        else:
            print(output)

    def _prepare_inputs(self, inputs: Dict[str, Union[torch.Tensor, Any]]) -> Dict[str, Union[torch.Tensor, Any]]:
        """

        Prepare :obj:`inputs` before feeding them to the model, converting them to tensors if they are not already and

        handling potential state.

        """
        for k, v in inputs.items():
            if isinstance(v, torch.Tensor):
                inputs[k] = v.to(self.args.device)

        if self.args.past_index >= 0 and self._past is not None:
            assert  False
            inputs["mems"] = self._past

        return inputs

    def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor:
        """

        Perform a training step on a batch of inputs.



        Subclass and override to inject custom behavior.



        Args:

            model (:obj:`nn.Module`):

                The model to train.

            inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):

                The inputs and targets of the model.



                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the

                argument :obj:`labels`. Check your model's documentation for all accepted arguments.



        Return:

            :obj:`torch.Tensor`: The tensor with training loss on this batch.

        """
        if hasattr(self, "_training_step"):
            warnings.warn(
                "The `_training_step` method is deprecated and won't be called in a future version, define `training_step` in your subclass.",
                FutureWarning,
            )
            return self._training_step(model, inputs, self.optimizer)

        model.train()
        if self.use_dropout:
            if self.gpt2 is not None:
                self.gpt2.train()
        inputs = self._prepare_inputs(inputs)

        if self.args.fp16 and _use_native_amp:
            with autocast():
                if self.distill:
                    loss = self.compute_loss_distill(model, inputs, gpt2_model=self.gpt2, )
                else:
                    loss = self.compute_loss(model, inputs, gpt2_model=self.gpt2)
        else:
            if self.distill:
                loss = self.compute_loss_distill(model, inputs, gpt2_model=self.gpt2)
            else:
                loss = self.compute_loss(model, inputs, gpt2_model=self.gpt2)

        if self.args.n_gpu > 1:
            loss = loss.mean()  # mean() to average on multi-gpu parallel training

        if self.args.gradient_accumulation_steps > 1:
            loss = loss / self.args.gradient_accumulation_steps

        if self.args.fp16 and _use_native_amp:
            self.scaler.scale(loss).backward()
        elif self.args.fp16 and _use_apex:
            with amp.scale_loss(loss, self.optimizer) as scaled_loss:
                scaled_loss.backward()
        else:
            # print(loss)
            loss.backward()

        # print('max allocated_memory:', torch.cuda.max_memory_allocated(0), 'total_memory:', torch.cuda.get_device_properties(0).total_memory,
        #       'percentage', torch.cuda.max_memory_allocated(0)/torch.cuda.get_device_properties(0).total_memory)


        return loss.detach()





    def compute_loss(self, model, inputs, gpt2_model=None):
        """

        How the loss is computed by Trainer. By default, all models return the loss in the first element.



        Subclass and override for custom behavior.

        """
        # outputs = model.forward_weighted(**inputs)
        if 'prompt_lab' in inputs:
            prompt_lab_ = inputs['prompt_lab']
            k = torch.cat(self.discri_labels_code, dim=0)
            inputs['control_code'] = torch.index_select(k, 0, prompt_lab_)
            del inputs['prompt_lab']

        outputs = model(**inputs, gpt2_model=gpt2_model)
        # Save past state if it exists
        if self.args.past_index >= 0:
            self._past = outputs[self.args.past_index]

        # print(outputs[0])
        # We don't use .loss here since the model may return tuples instead of ModelOutput.
        # print(outputs[0], outputs.loss)
        # URGENT
        # print('compute_loss', outputs[0])
        return outputs[0].mean()

    def compute_loss_distill(self, model, inputs, gpt2_model=None):
        """

        How the loss is computed by Trainer. By default, all models return the loss in the first element.



        Subclass and override for custom behavior.

        """
        # outputs = model.forward_weighted(**inputs)

        with torch.no_grad():
            output_finetuned = self.finetuned_gpt2(**inputs)

        outputs = model(**inputs, gpt2_model=gpt2_model)
        # Save past state if it exists
        if self.args.past_index >= 0:
            self._past = outputs[self.args.past_index]

        if self.matching_objective == 'kl':
            # distrib_finetuned=torch.log_softmax(output_finetuned.logits[:,:,:-2], dim=-1)  #bsz, seqlen, vocab
            distrib_finetuned=torch.log_softmax(output_finetuned.logits, dim=-1)  #bsz, seqlen, vocab
            distrib_prefix = torch.log_softmax(outputs.logits, dim=-1)  # bsz, seqlen, vocab
            loss = torch.sum(distrib_finetuned.exp() * (distrib_finetuned - distrib_prefix), dim=-1) #bsz, seqlen

        elif self.matching_objective == 'logits':
            loss = torch.norm(output_finetuned.logits - outputs.logits, dim=-1)  #bsz, seqlen
            # loss = torch.norm(output_finetuned.logits[:,:,:-2] - outputs.logits, dim=-1)  #bsz, seqlen

        elif self.matching_objective == 'last_layer':
            activation_diff = output_finetuned.last_hidden_state - outputs.last_hidden_state
            loss = torch.norm(activation_diff, dim=-1)  # bsz, seqlen
        else:
            assert False, "invalid matching_objective"

        return  loss.sum(dim=-1).mean()

    def is_local_master(self) -> bool:
        """

        Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on

        several machines) main process.



        .. warning::



            This method is deprecated, use :meth:`~transformers.Trainer.is_local_process_zero` instead.

        """
        warnings.warn("This method is deprecated, use `Trainer.is_local_process_zero()` instead.", FutureWarning)
        return self.is_local_process_zero()

    def is_local_process_zero(self) -> bool:
        """

        Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on

        several machines) main process.

        """
        if is_torch_tpu_available():
            return xm.is_master_ordinal(local=True)
        else:
            return self.args.local_rank in [-1, 0]

    def is_world_master(self) -> bool:
        """

        Whether or not this process is the global main process (when training in a distributed fashion on

        several machines, this is only going to be :obj:`True` for one process).



        .. warning::



            This method is deprecated, use :meth:`~transformers.Trainer.is_world_process_zero` instead.

        """
        warnings.warn("This method is deprecated, use `Trainer.is_world_process_zero()` instead.", FutureWarning)
        return self.is_world_process_zero()

    def is_world_process_zero(self) -> bool:
        """

        Whether or not this process is the global main process (when training in a distributed fashion on

        several machines, this is only going to be :obj:`True` for one process).

        """
        if is_torch_tpu_available():
            return xm.is_master_ordinal(local=False)
        else:
            return self.args.local_rank == -1 or torch.distributed.get_rank() == 0

    def save_model(self, output_dir: Optional[str] = None):
        """

        Will save the model, so you can reload it using :obj:`from_pretrained()`.



        Will only save from the world_master process (unless in TPUs).

        """

        if is_torch_tpu_available():
            self._save_tpu(output_dir)
        elif self.is_world_process_zero():
            self._save(output_dir)

    def _save_tpu(self, output_dir: Optional[str] = None):
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        logger.info("Saving model checkpoint to %s", output_dir)

        if xm.is_master_ordinal():
            os.makedirs(output_dir, exist_ok=True)
            torch.save(self.args, os.path.join(output_dir, "training_args.bin"))
            json.dump(
                self.log_history, open(os.path.join(output_dir, "log_history.json"), "w"), indent=2, ensure_ascii=False
            )

        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        if not isinstance(self.model, PreTrainedModel):
            raise ValueError("Trainer.model appears to not be a PreTrainedModel")

        xm.rendezvous("saving_checkpoint")
        self.model.save_pretrained(output_dir)
        if self.tokenizer is not None:
            self.tokenizer.save_pretrained(output_dir)

    def _save(self, output_dir: Optional[str] = None):
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        os.makedirs(output_dir, exist_ok=True)
        logger.info("Saving model checkpoint to %s", output_dir)
        # Save a trained model and configuration using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        if not isinstance(self.model, PreTrainedModel):
            raise ValueError("Trainer.model appears to not be a PreTrainedModel")
        self.model.save_pretrained(output_dir)
        if self.tokenizer is not None:
            self.tokenizer.save_pretrained(output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(self.args, os.path.join(output_dir, "training_args.bin"))
        json.dump(
            self.log_history, open(os.path.join(output_dir, "log_history.json"), "w"), indent=2, ensure_ascii=False
        )

    def store_flos(self):
        # Storing the number of floating-point operations that went into the model
        if self.total_flos is not None:
            if self.args.local_rank != -1:
                total_flos = distributed_broadcast_scalars([self.total_flos]).sum().item()
            else:
                total_flos = self.total_flos
            if total_flos > 0:
                self.model.config.total_flos = total_flos

    def _sorted_checkpoints(self, checkpoint_prefix=PREFIX_CHECKPOINT_DIR, use_mtime=False) -> List[str]:
        output_dir_name = os.path.basename(self.args.output_dir)
        checkpoint_prefix = f"{output_dir_name}-{PREFIX_CHECKPOINT_DIR}"

        ordering_and_checkpoint_path = []

        glob_checkpoints = [str(x) for x in Path(self.args.output_dir).glob(f"{checkpoint_prefix}-*")]

        for path in glob_checkpoints:
            if use_mtime:
                ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
            else:
                regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
                if regex_match and regex_match.groups():
                    ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

        checkpoints_sorted = sorted(ordering_and_checkpoint_path)
        checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
        return checkpoints_sorted

    def _rotate_checkpoints(self, use_mtime=False) -> None:
        if self.args.save_total_limit is None or self.args.save_total_limit <= 0:
            return

        # Check if we should delete older checkpoint(s)
        checkpoints_sorted = self._sorted_checkpoints(use_mtime=use_mtime)
        if len(checkpoints_sorted) <= self.args.save_total_limit:
            return

        number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - self.args.save_total_limit)
        checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
        for checkpoint in checkpoints_to_be_deleted:
            logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
            shutil.rmtree(checkpoint)

    def evaluate(self, eval_dataset: Optional[Dataset] = None) -> Dict[str, float]:
        """

        Run evaluation and returns metrics.



        The calling script will be responsible for providing a method to compute metrics, as they are

        task-dependent (pass it to the init :obj:`compute_metrics` argument).



        You can also subclass and override this method to inject custom behavior.



        Args:

            eval_dataset (:obj:`Dataset`, `optional`):

                Pass a dataset if you wish to override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`,

                columns not accepted by the ``model.forward()`` method are automatically removed.



        Returns:

            A dictionary containing the evaluation loss and the potential metrics computed from the predictions.

        """
        eval_dataloader = self.get_eval_dataloader(eval_dataset)

        output = self.prediction_loop(eval_dataloader, description="Evaluation")

        self.log(output.metrics)

        if self.args.tpu_metrics_debug or self.args.debug:
            # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
            xm.master_print(met.metrics_report())

        return output.metrics



    def predict(self, test_dataset: Dataset) -> PredictionOutput:
        """

        Run prediction and returns predictions and potential metrics.



        Depending on the dataset and your use case, your test dataset may contain labels.

        In that case, this method will also return metrics, like in :obj:`evaluate()`.



        Args:

            test_dataset (:obj:`Dataset`):

                Dataset to run the predictions on. If it is an :obj:`datasets.Dataset`, columns not accepted by the

                ``model.forward()`` method are automatically removed.



        Returns:

            `NamedTuple`:

            predictions (:obj:`np.ndarray`):

                The predictions on :obj:`test_dataset`.

            label_ids (:obj:`np.ndarray`, `optional`):

                The labels (if the dataset contained some).

            metrics (:obj:`Dict[str, float]`, `optional`):

                The potential dictionary of metrics (if the dataset contained labels).

        """
        test_dataloader = self.get_test_dataloader(test_dataset)

        return self.prediction_loop(test_dataloader, description="Prediction")

    def prediction_loop(

        self, dataloader: DataLoader, description: str, prediction_loss_only: Optional[bool] = None

    ) -> PredictionOutput:
        """

        Prediction/evaluation loop, shared by :obj:`Trainer.evaluate()` and :obj:`Trainer.predict()`.



        Works both with or without labels.

        """
        if hasattr(self, "_prediction_loop"):
            warnings.warn(
                "The `_prediction_loop` method is deprecated and won't be called in a future version, define `prediction_loop` in your subclass.",
                FutureWarning,
            )
            return self._prediction_loop(dataloader, description, prediction_loss_only=prediction_loss_only)

        prediction_loss_only = (
            prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only
        )

        assert not getattr(
            self.model.config, "output_attentions", False
        ), "The prediction loop does not work with `output_attentions=True`."
        assert not getattr(
            self.model.config, "output_hidden_states", False
        ), "The prediction loop does not work with `output_hidden_states=True`."

        model = self.model
        # multi-gpu eval
        if self.args.n_gpu > 1:
            model = torch.nn.DataParallel(model)
        else:
            model = self.model
        # Note: in torch.distributed mode, there's no point in wrapping the model
        # inside a DistributedDataParallel as we'll be under `no_grad` anyways.

        batch_size = dataloader.batch_size
        logger.info("***** Running %s *****", description)
        logger.info("  Num examples = %d", self.num_examples(dataloader))
        logger.info("  Batch size = %d", batch_size)
        eval_losses: List[float] = []
        preds: torch.Tensor = None
        label_ids: torch.Tensor = None
        entropy_losses: List[float] = []
        model.eval()
        if self.gpt2 is not None:
            self.gpt2.eval()

        print(model.training)
        print(self.gpt2.training)

        if is_torch_tpu_available():
            dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device)

        if self.args.past_index >= 0:
            self._past = None

        disable_tqdm = not self.is_local_process_zero() or self.args.disable_tqdm
        for inputs in tqdm(dataloader, desc=description, disable=disable_tqdm):
            loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only)
            batch_size = inputs[list(inputs.keys())[0]].shape[0]
            if loss is not None:
                eval_losses.extend([loss] * batch_size)
            if logits is not None:
                preds = logits if preds is None else nested_concat(preds, logits, dim=0)
                temp_logits = [torch.log_softmax(x) for x in logits]
                entropy_losses.extend([(x.exp() * x).sum() for x in temp_logits])
            if labels is not None:
                label_ids = labels if label_ids is None else nested_concat(label_ids, labels, dim=0)

        if self.args.past_index and hasattr(self, "_past"):
            # Clean the state at the end of the evaluation loop
            delattr(self, "_past")



        if self.compute_metrics is not None and preds is not None and label_ids is not None:
            metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids))
        else:
            metrics = {}

        # Prefix all keys with eval_
        for key in list(metrics.keys()):
            if not key.startswith("eval_"):
                metrics[f"eval_{key}"] = metrics.pop(key)
        if len(entropy_losses) > 0:
            metrics['entropy'] = np.mean(entropy_losses)
            print('entropy', metrics['entropy'] )

        return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics)

    def prediction_step(

        self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]], prediction_loss_only: bool

    ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
        """

        Perform an evaluation step on :obj:`model` using obj:`inputs`.



        Subclass and override to inject custom behavior.



        Args:

            model (:obj:`nn.Module`):

                The model to evaluate.

            inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):

                The inputs and targets of the model.



                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the

                argument :obj:`labels`. Check your model's documentation for all accepted arguments.

            prediction_loss_only (:obj:`bool`):

                Whether or not to return the loss only.



        Return:

            Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:

            A tuple with the loss, logits and labels (each being optional).

        """
        has_labels = all(inputs.get(k) is not None for k in self.args.label_names)
        inputs = self._prepare_inputs(inputs)

        # At eval time, set the weights to 1/bsz. and see the results..

        # if 'weights' in inputs:
        #     weights = inputs['weights']
        #     bsz = weights.view(-1).shape[0]
        #     weights = (torch.ones(weights.shape)/bsz).to(weights.device)
        #     inputs['weights'] = weights

        with torch.no_grad():
            # outputs = model.forward_weighted(**inputs)
            outputs = model(**inputs, gpt2_model=self.gpt2)
            if has_labels:
                # The .mean() is to reduce in case of distributed training
                loss = outputs[0].mean().item()
                logits = outputs[1:]
            else:
                loss = None
                # Slicing so we get a tuple even if `outputs` is a `ModelOutput`.
                logits = outputs[:]
            if self.args.past_index >= 0:
                self._past = outputs[self.args.past_index if has_labels else self.args.past_index - 1]

        if prediction_loss_only:
            return (loss, None, None)

        logits = tuple(logit.detach() for logit in logits)
        if len(logits) == 1:
            logits = logits[0]

        if has_labels:
            labels = tuple(inputs.get(name).detach() for name in self.args.label_names)
            if len(labels) == 1:
                labels = labels[0]
        else:
            labels = None

        return (loss, logits, labels)

    def floating_point_ops(self, inputs: Dict[str, Union[torch.Tensor, Any]]):
        """

        For models that inherit from :class:`~transformers.PretrainedModel`, uses

        that method to compute the number of floating point operations for every backward + forward pass. If using

        another model, either implement such a method in the model or subclass and override this method.



        Args:

            model (:obj:`nn.Module`):

                The model to evaluate.

            inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):

                The inputs and targets of the model.



        Returns:

            :obj:`int`: The number of floating-point operations.

        """

        if isinstance(self.model, torch.nn.DataParallel) or isinstance(
            self.model, torch.nn.parallel.DistributedDataParallel
        ):
            model = self.model.module
        else:
            model = self.model

        if hasattr(model, "floating_point_ops"):
            return model.floating_point_ops(inputs)

        else:
            return 0