File size: 9,006 Bytes
3d5e231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# ------------------------------------------------------------------------------------
# Minimal DALL-E
# Copyright (c) 2021 KakaoBrain. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------------------
# Modified from minGPT (https://github.com/karpathy/minGPT)
# Copyright (c) 2020 Andrej Karpathy. All Rights Reserved.
# ------------------------------------------------------------------------------------

import math
import torch
import torch.nn as nn
from torch.nn import functional as F


class GELU(nn.Module):
    def __init__(self, use_approx=False):
        super().__init__()
        self.use_approx = use_approx

    def forward(self, x):
        if self.use_approx:
            return x * torch.sigmoid(1.702 * x)
        else:
            return F.gelu(x)


class MultiHeadSelfAttention(nn.Module):

    def __init__(self,
                 ctx_len: int,
                 embed_dim: int,
                 n_heads: int,
                 resid_pdrop: float,
                 attn_pdrop: float,
                 attn_bias: bool,
                 use_mask: bool = True):
        super().__init__()
        assert embed_dim % n_heads == 0

        # key, query, value projections for all heads
        self.key = nn.Linear(embed_dim, embed_dim, bias=attn_bias)
        self.query = nn.Linear(embed_dim, embed_dim, bias=attn_bias)
        self.value = nn.Linear(embed_dim, embed_dim, bias=attn_bias)

        # regularization
        self.attn_drop = nn.Dropout(attn_pdrop)
        self.resid_drop = nn.Dropout(resid_pdrop)

        # output projection
        self.proj = nn.Linear(embed_dim, embed_dim, attn_bias)

        self.n_heads = n_heads
        self.ctx_len = ctx_len
        self.use_mask = use_mask
        if self.use_mask:
            self.register_buffer("mask", torch.ones(ctx_len, ctx_len), persistent=False)
            self.mask = torch.tril(self.mask).view(1, ctx_len, ctx_len)

    def forward(self, x, use_cache=False, layer_past=None):
        B, T, C = x.shape
        x = x.transpose(0, 1).contiguous()  # (B, T, C) -> (T, B, C)

        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        k = self.key(x).view(T, B*self.n_heads, C//self.n_heads).transpose(0, 1)  # (B*nh, T, hs)
        q = self.query(x).view(T, B*self.n_heads, C//self.n_heads).transpose(0, 1)  # (B*nh, T, hs)
        v = self.value(x).view(T, B*self.n_heads, C//self.n_heads).transpose(0, 1)  # (B*nh, T, hs)

        if use_cache:
            present = torch.stack([k, v])

        if layer_past is not None:
            # print(layer_past.shape, k.shape, v.shape, q.shape)
            # print("LayerPast shape", layer_past.shape)
            past_key, past_value = layer_past

            if len(past_key.shape) == 4:
                _, _, seq_len, dim = past_key.shape
                k = torch.cat([past_key.reshape(-1, seq_len, dim), k], dim=-2)
                v = torch.cat([past_value.reshape(-1, seq_len, dim), v], dim=-2)
            elif len(past_key.shape) == 3:
                past_key, past_value = layer_past
                k = torch.cat([past_key, k], dim=-2)
                v = torch.cat([past_value, v], dim=-2)
            else:
                raise ValueError

        if use_cache and layer_past is not None:
            # Tensor shape below: (B * nh, 1, hs) X (B * nh, hs, K) -> (B * nh, 1, K)
            att = torch.bmm(q, (k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))))
            att = F.softmax(att, dim=-1)
            att = self.attn_drop(att)
            y = torch.bmm(att, v)  # (B*nh, 1, K) X (B*nh, K, hs) -> (B*nh, 1, hs)
        else:
            # Tensor shape below: (B * nh, T, hs) X (B * nh, hs, T) -> (B * nh, T, T)
            att = torch.bmm(q, (k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))))
            if self.use_mask:
                # TODO : Flip when not prompt tunign
                # mask = self.mask if T == self.ctx_len else self.mask[:, :T, :T]
                if T == self.ctx_len:
                    mask = self.mask
                else:
                    mask = torch.tril(torch.ones(T, T)).view(1, T, T).to(att.device)
                att = att.masked_fill(mask == 0, float('-inf'))
            att = F.softmax(att, dim=-1)
            att = self.attn_drop(att)
            y = torch.bmm(att, v)  # (B*nh, T, T) X (B*nh, T, hs) -> (B*nh, T, hs)
        y = y.transpose(0, 1).contiguous().view(T, B, C)  # re-assemble all head outputs side by side

        # output projection
        y = self.resid_drop(self.proj(y))
        if use_cache:
            return y.transpose(0, 1).contiguous(), present  # (T, B, C) -> (B, T, C)
        else:
            return y.transpose(0, 1).contiguous()  # (T, B, C) -> (B, T, C)

    def forward_with_context(self, x, context, mask=None):
        B, T, C = x.shape
        x = x.transpose(0, 1).contiguous()  # (B, T, C) -> (T, B, C)

        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        q = self.query(x).view(T, B*self.n_heads, C//self.n_heads).transpose(0, 1)  # (B*nh, T, hs)

        B, T_c, C = context.shape
        k = self.key(context).view(T_c, B * self.n_heads, C // self.n_heads).transpose(0, 1)  # (B*nh, T, hs)
        v = self.value(context).view(T_c, B*self.n_heads, C//self.n_heads).transpose(0, 1)  # (B*nh, T, hs)

        # Tensor shape below: (B * nh, T, hs) X (B * nh, hs, Tc) -> (B * nh, T, Tc)
        att = torch.bmm(q, (k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))))
        att = F.softmax(att, dim=-1)
        att = self.attn_drop(att)
        y = torch.bmm(att, v)  # (B*nh, T, T) X (B*nh, T, hs) -> (B*nh, T, hs)
        y = y.transpose(0, 1).contiguous().view(T, B, C)  # re-assemble all head outputs side by side

        # output projection
        y = self.resid_drop(self.proj(y)).transpose(0, 1).contiguous()
        if mask is not None:
            y = y.masked_fill(mask == 0, float('0.0'))
        return y  # (T, B, C) -> (B, T, C)


class Block(nn.Module):

    def __init__(self,
                 ctx_len: int,
                 embed_dim: int,
                 n_heads: int,
                 mlp_bias: bool,
                 attn_bias: bool,
                 resid_pdrop: bool,
                 attn_pdrop: bool,
                 gelu_use_approx: bool):
        super().__init__()
        self.ln1 = nn.LayerNorm(embed_dim)
        self.ln2 = nn.LayerNorm(embed_dim)

        self.attn = MultiHeadSelfAttention(ctx_len=ctx_len,
                                           embed_dim=embed_dim,
                                           n_heads=n_heads,
                                           attn_pdrop=attn_pdrop,
                                           resid_pdrop=resid_pdrop,
                                           attn_bias=attn_bias,
                                           use_mask=True)
        self.mlp = nn.Sequential(
            nn.Linear(embed_dim, 4 * embed_dim, bias=mlp_bias),
            GELU(gelu_use_approx),
            nn.Linear(4 * embed_dim, embed_dim, bias=mlp_bias),
            nn.Dropout(resid_pdrop),
        )

    def forward(self, x, layer_past=None):
        x = x + self.attn(self.ln1(x), layer_past=layer_past)
        x = x + self.mlp(self.ln2(x))
        return x

    def sample(self, x, layer_past=None):
        attn, present = self.attn(self.ln1(x), use_cache=True, layer_past=layer_past)
        x = x + attn
        x = x + self.mlp(self.ln2(x))
        return x, present

    def sample_with_context(self, x, context, context_mask, cross_attn_layer, layer_past=None):
        attn, present = self.attn(self.ln1(x), use_cache=True, layer_past=layer_past)
        x = x + attn
        c_attn = cross_attn_layer(x, context, context_mask)
        x = x + c_attn
        x = x + self.mlp(self.ln2(x))
        return x, present


class CrossAttentionLayer(nn.Module):

    def __init__(self,
                 ctx_len: int,
                 embed_dim: int,
                 n_heads: int,
                 attn_bias: bool,
                 resid_pdrop: bool,
                 attn_pdrop: bool):
        super().__init__()

        self.ln1 = nn.LayerNorm(embed_dim)
        self.ln2 = nn.LayerNorm(embed_dim)
        self.attn = MultiHeadSelfAttention(ctx_len=ctx_len,
                                           embed_dim=embed_dim,
                                           n_heads=n_heads,
                                           attn_pdrop=attn_pdrop,
                                           resid_pdrop=resid_pdrop,
                                           attn_bias=attn_bias,
                                           use_mask=False)

    def forward(self, x, context, context_mask=None):
        attn = self.attn.forward_with_context(self.ln1(x), self.ln2(context), context_mask)
        # x = x + attn
        # return x
        return attn