Spaces:
Build error
Build error
File size: 13,775 Bytes
3d5e231 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
# ------------------------------------------------------------------------------------
# Minimal DALL-E
# Copyright (c) 2021 KakaoBrain. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------------------
import torch
from typing import Optional
from tqdm import tqdm
from torch.nn import functional as F
torch.set_printoptions(precision=2, threshold=10)
def cutoff_topk_logits(logits: torch.FloatTensor, k: int) -> torch.FloatTensor:
if k is None:
return logits
else:
v, ix = torch.topk(logits, k)
out = logits.clone()
out[out < v[:, [-1]]] = -float('Inf')
return out
def cutoff_topp_probs(probs: torch.FloatTensor, p: float) -> torch.FloatTensor:
if p is None:
return probs
else:
sorted_probs, sorted_indices = torch.sort(probs, dim=-1, descending=True)
cum_probs = torch.cumsum(sorted_probs, dim=-1)
sorted_idx_remove_cond = cum_probs >= p
sorted_idx_remove_cond[..., 1:] = sorted_idx_remove_cond[..., :-1].clone()
sorted_idx_remove_cond[..., 0] = 0
indices_to_remove = sorted_idx_remove_cond.scatter(-1, sorted_indices, sorted_idx_remove_cond)
probs = probs.masked_fill(indices_to_remove, 0.0)
norm_probs = probs / torch.sum(probs, dim=-1, keepdim=True)
return norm_probs
def get_positional_encoding(inputs: torch.LongTensor, mode: str = '1d') -> torch.LongTensor:
device = inputs.device
if mode == '1d':
B, N = inputs.shape
xs_pos = torch.arange(N, device=device).repeat((B, 1))
elif mode == '2d':
B, H, W = inputs.shape
xs_pos_h = torch.arange(H, device=device).repeat(B, W, 1).transpose(1, 2)
xs_pos_w = torch.arange(W, device=device).repeat(B, H, 1)
xs_pos = (xs_pos_h, xs_pos_w)
else:
raise ValueError('%s positional encoding invalid' % mode)
return xs_pos
@torch.no_grad()
def sampling(model: torch.nn.Module,
tokens: torch.LongTensor,
top_k: Optional[float] = None,
top_p: Optional[float] = None,
softmax_temperature: float = 1.0,
is_tqdm: bool = True,
use_fp16: bool = True,
max_seq_len: int = 256,
prompt: Optional[torch.tensor] = None,
pos_prompt: Optional[torch.Tensor] = None) -> torch.LongTensor:
code = None
past = None
pbar = tqdm(range(max_seq_len), total=max_seq_len) if is_tqdm else range(max_seq_len)
pos_enc_tokens = get_positional_encoding(tokens, mode='1d')
for cnt, h in enumerate(pbar):
if code is None:
code_ = None
pos_enc_code_ = None
else:
code_ = code.clone().detach()
pos_enc_code_ = get_positional_encoding(code_, mode='1d')
code_ = code_[:, cnt-1].unsqueeze(-1)
pos_enc_code_ = pos_enc_code_[:, cnt-1].unsqueeze(-1)
logits, present = model.sampling(images=code_,
texts=tokens,
pos_images=pos_enc_code_,
pos_texts=pos_enc_tokens,
use_fp16=use_fp16,
past=past,
prompt=prompt,
pos_prompt=pos_prompt)
logits = logits.to(dtype=torch.float32)
logits = logits / softmax_temperature
# print(len(present), present[0].shape)
present = torch.stack(present).clone().detach()
if past is None:
past = [present]
else:
past.append(present)
logits = cutoff_topk_logits(logits, top_k)
probs = F.softmax(logits, dim=-1)
probs = cutoff_topp_probs(probs, top_p)
# print(probs[0])
idx = torch.multinomial(probs, num_samples=1).clone().detach()
# print(idx)
code = idx if code is None else torch.cat([code, idx], axis=1)
del past
return code
@torch.no_grad()
def sampling_prefix(model: torch.nn.Module,
tokens: torch.LongTensor,
past: torch.FloatTensor,
top_k: Optional[float] = None,
top_p: Optional[float] = None,
softmax_temperature: float = 1.0,
is_tqdm: bool = True,
use_fp16: bool = True,
max_seq_len: int = 256,
labels = None) -> torch.LongTensor:
code = None
pbar = tqdm(range(max_seq_len), total=max_seq_len) if is_tqdm else range(max_seq_len)
pos_enc_tokens = get_positional_encoding(tokens, mode='1d')
# print("Entering sampling_prefix; ", past.shape)
if past is not None:
past = [past]
for cnt, h in enumerate(pbar):
if code is None:
code_ = None
pos_enc_code_ = None
else:
code_ = code.clone().detach()
pos_enc_code_ = get_positional_encoding(code_, mode='1d')
code_ = code_[:, cnt-1].unsqueeze(-1)
pos_enc_code_ = pos_enc_code_[:, cnt-1].unsqueeze(-1)
# print("Looop enter")
# print(cnt, past[0].shape)
# print("-------------------")
logits, present = model.sampling(images=code_,
texts=tokens,
pos_images=pos_enc_code_,
pos_texts=pos_enc_tokens,
use_fp16=use_fp16,
past=past)
logits = logits.to(dtype=torch.float32)
logits = logits / softmax_temperature
present = torch.stack(present).clone().detach()
# print('Present', present.shape)
if past is None:
past = [present]
else:
# print("Loop end")
# print(present.shape)
# print("-----------------")
# n_layers, temp, _, seq_len, n_dim = present.shape
# _, _, bs, n_heads, pre_seq_len, n_dim = past[0].shape
# assert temp == 2
# past.append(present.view(n_layers, temp, bs, n_heads, seq_len, n_dim))
past.append(present)
logits = cutoff_topk_logits(logits, top_k)
probs = F.softmax(logits, dim=-1)
probs = cutoff_topp_probs(probs, top_p)
print(torch.topk(probs, 5, dim=-1))
if labels is not None:
print(labels[cnt])
idx = torch.multinomial(probs, num_samples=1).clone().detach()
# print(idx)
code = idx if code is None else torch.cat([code, idx], axis=1)
del past
return code
@torch.no_grad()
def sampling_prefix_new(model: torch.nn.Module,
tokens: torch.LongTensor,
past: torch.FloatTensor,
top_k: Optional[float] = None,
top_p: Optional[float] = None,
softmax_temperature: float = 1.0,
is_tqdm: bool = True,
use_fp16: bool = True,
max_seq_len: int = 256) -> torch.LongTensor:
code = None
pbar = tqdm(range(max_seq_len), total=max_seq_len) if is_tqdm else range(max_seq_len)
pos_enc_tokens = get_positional_encoding(tokens, mode='1d')
# print("Entering sampling_prefix; ", past.shape)
if past is not None:
past = [past]
for cnt, h in enumerate(pbar):
if code is None:
code_ = None
pos_enc_code_ = None
else:
code_ = code.clone().detach()
pos_enc_code_ = get_positional_encoding(code_, mode='1d')
# code_ = code_[:, cnt-1].unsqueeze(-1)
# pos_enc_code_ = pos_enc_code_[:, cnt-1].unsqueeze(-1)
# print("Looop enter")
# print(cnt, past[0].shape)
# print("-------------------")
if cnt == 0:
logits, present = model.sampling(images=code_,
texts=tokens,
pos_images=pos_enc_code_,
pos_texts=pos_enc_tokens,
use_fp16=use_fp16,
past=past)
logits = logits.to(dtype=torch.float32)
logits = logits / softmax_temperature
present = torch.stack(present).clone().detach()
# print('Present', present.shape)
if past is None:
past = [present]
else:
pass
logits = cutoff_topk_logits(logits, top_k)
probs = F.softmax(logits, dim=-1)
probs = cutoff_topp_probs(probs, top_p)
# print(torch.topk(probs[0], 5))
idx = torch.multinomial(probs, num_samples=1).clone().detach()
# print(idx)
code = idx if code is None else torch.cat([code, idx], axis=1)
else:
pass
del past
return code
@torch.no_grad()
def sampling_conditional(model: torch.nn.Module,
cross_attention_idxs,
cross_attention_layers,
tokens: torch.LongTensor,
src_codes: torch.FloatTensor,
top_k: Optional[float] = None,
top_p: Optional[float] = None,
softmax_temperature: float = 1.0,
is_tqdm: bool = True,
use_fp16: bool = True,
max_seq_len: int = 256,
prompt: Optional[torch.tensor] = None,
pos_prompt: Optional[torch.Tensor] = None) -> torch.LongTensor:
code = None
past = None
pbar = tqdm(range(max_seq_len), total=max_seq_len) if is_tqdm else range(max_seq_len)
pos_enc_tokens = get_positional_encoding(tokens, mode='1d')
src_pos_tokens = get_positional_encoding(src_codes, mode='1d')
src_tokens = model.tok_emb_img(src_codes)
src_tokens = src_tokens + model.pos_emb_img(src_pos_tokens)
for cnt, h in enumerate(pbar):
if code is None:
code_ = None
pos_enc_code_ = None
else:
code_ = code.clone().detach()
pos_enc_code_ = get_positional_encoding(code_, mode='1d')
code_ = code_[:, cnt-1].unsqueeze(-1)
pos_enc_code_ = pos_enc_code_[:, cnt-1].unsqueeze(-1)
logits, present = model.sampling_with_context(images=code_,
cross_attention_idxs=cross_attention_idxs,
cross_attention_layers=cross_attention_layers,
texts=tokens,
pos_images=pos_enc_code_,
pos_texts=pos_enc_tokens,
source_image=src_tokens,
use_fp16=use_fp16,
past=past,
prompt=prompt,
pos_prompt=pos_prompt)
logits = logits.to(dtype=torch.float32)
logits = logits / softmax_temperature
present = torch.stack(present).clone().detach()
if past is None:
past = [present]
else:
past.append(present)
logits = cutoff_topk_logits(logits, top_k)
probs = F.softmax(logits, dim=-1)
probs = cutoff_topp_probs(probs, top_p)
idx = torch.multinomial(probs, num_samples=1).clone().detach()
code = idx if code is None else torch.cat([code, idx], axis=1)
del past
return code
@torch.no_grad()
def sampling_igpt(model: torch.nn.Module,
sos: torch.FloatTensor,
top_k: Optional[float] = None,
top_p: Optional[float] = None,
softmax_temperature: float = 1.0,
is_tqdm: bool = True,
use_fp16: bool = True,
max_seq_len: int = 256) -> torch.LongTensor:
code = None
past = None
pbar = tqdm(range(max_seq_len), total=max_seq_len) if is_tqdm else range(max_seq_len)
for cnt, h in enumerate(pbar):
if code is None:
code_ = None
pos_enc_code_ = None
else:
code_ = code.clone().detach()
pos_enc_code_ = get_positional_encoding(code_, mode='1d')
code_ = code_[:, cnt-1].unsqueeze(-1)
pos_enc_code_ = pos_enc_code_[:, cnt-1].unsqueeze(-1)
logits, present = model.sampling(sos=sos,
codes=code_,
pos_codes=pos_enc_code_,
use_fp16=use_fp16,
past=past)
logits = logits.to(dtype=torch.float32)
logits = logits / softmax_temperature
present = torch.stack(present).clone().detach()
if past is None:
past = [present]
else:
past.append(present)
logits = cutoff_topk_logits(logits, top_k)
probs = F.softmax(logits, dim=-1)
probs = cutoff_topp_probs(probs, top_p)
idx = torch.multinomial(probs, num_samples=1).clone().detach()
code = idx if code is None else torch.cat([code, idx], axis=1)
del past
return code
|