Spaces:
Build error
Build error
File size: 77,038 Bytes
3d5e231 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 |
import inspect
import json
import math
import os
import re
import shutil
import warnings
from contextlib import contextmanager
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from nltk import word_tokenize
import numpy as np
import torch
from packaging import version
from torch import nn
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.dataset import Dataset
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data.sampler import RandomSampler, Sampler, SequentialSampler
from tqdm.auto import tqdm, trange
from torch.nn.utils.rnn import pad_sequence
import random
from transformers.data.data_collator import DataCollator, DataCollatorWithPadding, default_data_collator
from transformers.file_utils import is_datasets_available, is_torch_tpu_available
from transformers.integrations import (
default_hp_search_backend,
is_comet_available,
is_optuna_available,
is_ray_available,
is_tensorboard_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.optimization import AdamW, get_linear_schedule_with_warmup, get_constant_schedule_with_warmup
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import (
PREFIX_CHECKPOINT_DIR,
BestRun,
EvalPrediction,
EvaluationStrategy,
HPSearchBackend,
PredictionOutput,
TrainOutput,
default_compute_objective,
default_hp_space,
set_seed,
)
from transformers.training_args import TrainingArguments
from transformers.utils import logging
_use_native_amp = False
_use_apex = False
EPS = 1e-12
INIT_GUMBEL_TEMP = 5.0
control_lst = ['positive', 'negative', 'neutral']
Control_Temp = {'positive': 3967, 'negative':4633, 'neutral':8500}
control_Map = [torch.LongTensor([3967]), torch.LongTensor([4633]), torch.LongTensor([8500])]
sst_lst = [(0, 2), (1, 3), (4,)]
sst_standard = ["positive", "negative", "very positive", "very negative", "neutral"]
# Control_?Map = {j:i for i, j in enumerate(control_lst)}
# Check if Pytorch version >= 1.6 to switch between Native AMP and Apex
if version.parse(torch.__version__) < version.parse("1.6"):
from transformers.file_utils import is_apex_available
if is_apex_available():
from apex import amp
_use_apex = True
else:
_use_native_amp = True
from torch.cuda.amp import autocast
if is_datasets_available():
import datasets
if is_torch_tpu_available():
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
import torch_xla.distributed.parallel_loader as pl
if is_tensorboard_available():
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
if is_wandb_available():
import wandb
if is_comet_available():
import comet_ml
if is_optuna_available():
import optuna
if is_ray_available():
from ray import tune
logger = logging.get_logger(__name__)
@contextmanager
def torch_distributed_zero_first(local_rank: int):
"""
Decorator to make all processes in distributed training wait for each local_master to do something.
Args:
local_rank (:obj:`int`): The rank of the local process.
"""
if local_rank not in [-1, 0]:
torch.distributed.barrier()
yield
if local_rank == 0:
torch.distributed.barrier()
def helper_token2bpe(offsets):
full_lst = []
for example_offset in offsets:
bpe2token = []
token2bpe = []
token_idx = -1
# print(example_offset)
for bpe_idx, (a,b) in enumerate(example_offset):
# print(token2bpe, a, b, bpe_idx)
if b - a > 0:
if a == 0:
# new token
token_idx += 1
bpe2token.append(token_idx)
token2bpe.append([])
token2bpe[-1].append(bpe_idx)
else:
# prev token.
bpe2token.append(token_idx)
token2bpe[-1].append(bpe_idx)
else:
bpe2token.append(None)
full_lst.append((bpe2token, token2bpe))
return full_lst
class SequentialDistributedSampler(Sampler):
"""
Distributed Sampler that subsamples indicies sequentially,
making it easier to collate all results at the end.
Even though we only use this sampler for eval and predict (no training),
which means that the model params won't have to be synced (i.e. will not hang
for synchronization even if varied number of forward passes), we still add extra
samples to the sampler to make it evenly divisible (like in `DistributedSampler`)
to make it easy to `gather` or `reduce` resulting tensors at the end of the loop.
"""
def __init__(self, dataset, num_replicas=None, rank=None):
if num_replicas is None:
if not torch.distributed.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = torch.distributed.get_world_size()
if rank is None:
if not torch.distributed.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = torch.distributed.get_rank()
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
self.total_size = self.num_samples * self.num_replicas
def __iter__(self):
indices = list(range(len(self.dataset)))
# add extra samples to make it evenly divisible
indices += indices[: (self.total_size - len(indices))]
assert (
len(indices) == self.total_size
), f"Indices length {len(indices)} and total size {self.total_size} mismatched"
# subsample
indices = indices[self.rank * self.num_samples : (self.rank + 1) * self.num_samples]
assert (
len(indices) == self.num_samples
), f"Indices length {len(indices)} and sample number {self.num_samples} mismatched"
return iter(indices)
def __len__(self):
return self.num_samples
def get_tpu_sampler(dataset: Dataset):
if xm.xrt_world_size() <= 1:
return RandomSampler(dataset)
return DistributedSampler(dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal())
class Trainer_Prefix:
"""
Trainer is a simple but feature-complete training and eval loop for PyTorch,
optimized for 🤗 Transformers.
Args:
model (:class:`~transformers.PreTrainedModel`, `optional`):
The model to train, evaluate or use for predictions. If not provided, a ``model_init`` must be passed.
args (:class:`~transformers.TrainingArguments`, `optional`):
The arguments to tweak for training. Will default to a basic instance of :class:`~transformers.TrainingArguments`
with the ``output_dir`` set to a directory named `tmp_trainer` in the current directory if not provided.
data_collator (:obj:`DataCollator`, `optional`):
The function to use to form a batch from a list of elements of :obj:`train_dataset` or
:obj:`eval_dataset`. Will default to :func:`~transformers.default_data_collator` if no ``tokenizer`` is
provided, an instance of :func:`~transformers.DataCollatorWithPadding` otherwise.
train_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`):
The dataset to use for training. If it is an :obj:`datasets.Dataset`, columns not accepted by the
``model.forward()`` method are automatically removed.
eval_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`):
The dataset to use for evaluation. If it is an :obj:`datasets.Dataset`, columns not accepted by the
``model.forward()`` method are automatically removed.
tokenizer (:class:`PreTrainedTokenizerBase`, `optional`):
The tokenizer used to preprocess the data. If provided, will be used to automatically pad the inputs the
maximum length when batching inputs, and it will be saved along the model to make it easier to rerun an
interrupted training or reuse the fine-tuned model.
model_init (:obj:`Callable[[], PreTrainedModel]`, `optional`):
A function that instantiates the model to be used. If provided, each call to
:meth:`~transformers.Trainer.train` will start from a new instance of the model as given by this function.
compute_metrics (:obj:`Callable[[EvalPrediction], Dict]`, `optional`):
The function that will be used to compute metrics at evaluation. Must take a
:class:`~transformers.EvalPrediction` and return a dictionary string to metric values.
tb_writer (:obj:`SummaryWriter`, `optional`):
Object to write to TensorBoard.
optimizers (:obj:`Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR`, `optional`):
A tuple containing the optimizer and the scheduler to use. Will default to an instance of
:class:`~transformers.AdamW` on your model and a scheduler given by
:func:`~transformers.get_linear_schedule_with_warmup` controlled by :obj:`args`.
kwargs:
Deprecated keyword arguments.
"""
def __init__(
self,
model: Optional[PreTrainedModel] = None,
model_gpt2 : Optional[PreTrainedModel] = None,
args: TrainingArguments = None,
data_collator: Optional[DataCollator] = None,
train_dataset: Optional[Dataset] = None,
eval_dataset: Optional[Dataset] = None,
tokenizer: Optional["PreTrainedTokenizerBase"] = None,
model_init: Callable[[], PreTrainedModel] = None,
compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
tb_writer: Optional["SummaryWriter"] = None,
optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
task_mode: Optional[str] = None,
use_dropout: Optional[bool] = False,
distill: Optional[bool] = False,
matching_objective:Optional[str]= None,
finetuned_gpt2: Optional[PreTrainedModel] = None,
**kwargs,
):
if args is None:
logger.info("No `TrainingArguments` passed, using the current path as `output_dir`.")
args = TrainingArguments("tmp_trainer")
self.args = args
# Seed must be set before instantiating the model when using model
set_seed(self.args.seed)
assert (
model is not None or model_init is not None
), "You must provide a model to use `Trainer`, either by using the `model` argument or the `model_init` argument."
assert model_init is None
self.model = model.to(args.device) if model is not None else None
self.gpt2 = model_gpt2.to(args.device) if model_gpt2 is not None else None
default_collator = default_data_collator if tokenizer is None else DataCollatorWithPadding(tokenizer)
self.data_collator = data_collator if data_collator is not None else default_collator
self.train_dataset = train_dataset
self.eval_dataset = eval_dataset
self.tokenizer = tokenizer
self.model_init = model_init
self.compute_metrics = compute_metrics
self.optimizer, self.lr_scheduler = optimizers
self.task_mode = task_mode
self.use_dropout = use_dropout
self.curr_best_eval = 10000000.
self.distill = distill
if self.distill:
self.matching_objective = matching_objective
self.finetuned_gpt2 = finetuned_gpt2
if model_init is not None and (self.optimizer is not None or self.lr_scheduler is not None):
raise RuntimeError(
"Passing a `model_init` is incompatible with providing the `optimizers` argument."
"You should subclass `Trainer` and override the `create_optimizer_and_scheduler` method."
)
self.tb_writer = tb_writer
self.log_history = []
if "prediction_loss_only" in kwargs:
warnings.warn(
"Passing `prediction_loss_only` as a keyword argument is deprecated and won't be possible in a future version. Use `args.prediction_loss_only` instead.",
FutureWarning,
)
self.args.prediction_loss_only = kwargs.pop("prediction_loss_only")
assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}."
if tb_writer is None and is_tensorboard_available() and self.is_world_process_zero():
self.tb_writer = SummaryWriter(log_dir=self.args.logging_dir)
if not is_tensorboard_available():
logger.warning(
"You are instantiating a Trainer but Tensorboard is not installed. You should consider installing it."
)
# Will be set to True by `self._setup_loggers()` on first call to `self.log()`.
self._loggers_initialized = False
# Create output directory if needed
if self.is_world_process_zero():
os.makedirs(self.args.output_dir, exist_ok=True)
if is_torch_tpu_available():
# Set an xla_device flag on the model's config.
# We'll find a more elegant and not need to do this in the future.
self.model.config.xla_device = True
if not callable(self.data_collator) and callable(getattr(self.data_collator, "collate_batch", None)):
self.data_collator = self.data_collator.collate_batch
warnings.warn(
(
"The `data_collator` should now be a simple callable (function, class with `__call__`), classes "
+ "with a `collate_batch` are deprecated and won't be supported in a future version."
),
FutureWarning,
)
if is_datasets_available():
if isinstance(train_dataset, datasets.Dataset):
self._remove_unused_columns(self.train_dataset, description="training")
if isinstance(eval_dataset, datasets.Dataset):
self._remove_unused_columns(self.eval_dataset, description="evaluation")
self.global_step = None
self.epoch = None
self.total_flos = None
if self.args.fp16 and _use_native_amp:
self.scaler = torch.cuda.amp.GradScaler()
self.hp_search_backend = None
self.use_tune_checkpoints = False
if self.args.label_names is None:
self.args.label_names = (["labels"]
)
def _remove_unused_columns(self, dataset: "datasets.Dataset", description: Optional[str] = None):
if not self.args.remove_unused_columns:
return
# Inspect model forward signature to keep only the arguments it accepts.
signature = inspect.signature(self.model.forward)
signature_columns = list(signature.parameters.keys())
# Labels may be named label or label_ids, the default data collator handles that.
signature_columns += ["label", "label_ids"]
columns = [k for k in signature_columns if k in dataset.column_names]
ignored_columns = list(set(dataset.column_names) - set(signature_columns))
dset_description = "" if description is None else f"in the {description} set "
logger.info(
f"The following columns {dset_description}don't have a corresponding argument in `{self.model.__class__.__name__}.forward` and have been ignored: {', '.join(ignored_columns)}."
)
dataset.set_format(type=dataset.format["type"], columns=columns)
def _get_train_sampler(self) -> Optional[torch.utils.data.sampler.Sampler]:
if isinstance(self.train_dataset, torch.utils.data.IterableDataset):
return None
elif is_torch_tpu_available():
return get_tpu_sampler(self.train_dataset)
else:
return (
RandomSampler(self.train_dataset)
if self.args.local_rank == -1
else DistributedSampler(self.train_dataset)
)
def get_train_dataloader(self) -> DataLoader:
"""
Returns the training :class:`~torch.utils.data.DataLoader`.
Will use no sampler if :obj:`self.train_dataset` is a :obj:`torch.utils.data.IterableDataset`, a random sampler
(adapted to distributed training if necessary) otherwise.
Subclass and override this method if you want to inject some custom behavior.
"""
if self.train_dataset is None:
raise ValueError("Trainer: training requires a train_dataset.")
train_sampler = self._get_train_sampler()
return DataLoader(
self.train_dataset,
batch_size=self.args.train_batch_size,
sampler=train_sampler,
collate_fn=self.data_collator,
drop_last=self.args.dataloader_drop_last,
num_workers=self.args.dataloader_num_workers,
worker_init_fn=np.random.seed(self.args.seed)
)
def _get_eval_sampler(self, eval_dataset: Dataset) -> Optional[torch.utils.data.sampler.Sampler]:
if isinstance(eval_dataset, torch.utils.data.IterableDataset):
return None
elif is_torch_tpu_available():
return SequentialDistributedSampler(eval_dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal())
elif self.args.local_rank != -1:
return SequentialDistributedSampler(eval_dataset)
else:
return SequentialSampler(eval_dataset)
def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
"""
Returns the evaluation :class:`~torch.utils.data.DataLoader`.
Will use no sampler if :obj:`self.eval_dataset` is a :obj:`torch.utils.data.IterableDataset`, a sequential
sampler (adapted to distributed training if necessary) otherwise.
Subclass and override this method if you want to inject some custom behavior.
Args:
eval_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`):
If provided, will override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`, columns not
accepted by the ``model.forward()`` method are automatically removed.
"""
if eval_dataset is None and self.eval_dataset is None:
raise ValueError("Trainer: evaluation requires an eval_dataset.")
elif eval_dataset is not None and is_datasets_available() and isinstance(eval_dataset, datasets.Dataset):
self._remove_unused_columns(eval_dataset, description="evaluation")
eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
eval_sampler = self._get_eval_sampler(eval_dataset)
return DataLoader(
eval_dataset,
sampler=eval_sampler,
batch_size=self.args.eval_batch_size,
collate_fn=self.data_collator,
drop_last=self.args.dataloader_drop_last,
num_workers=self.args.dataloader_num_workers,
worker_init_fn=np.random.seed(self.args.seed)
)
def get_test_dataloader(self, test_dataset: Dataset) -> DataLoader:
"""
Returns the test :class:`~torch.utils.data.DataLoader`.
Will use no sampler if :obj:`test_dataset` is a :obj:`torch.utils.data.IterableDataset`, a sequential
sampler (adapted to distributed training if necessary) otherwise.
Subclass and override this method if you want to inject some custom behavior.
Args:
eval_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`):
The test dataset to use. If it is an :obj:`datasets.Dataset`, columns not accepted by the
``model.forward()`` method are automatically removed.
"""
if is_datasets_available() and isinstance(test_dataset, datasets.Dataset):
self._remove_unused_columns(test_dataset, description="test")
test_sampler = self._get_eval_sampler(test_dataset)
# We use the same batch_size as for eval.
return DataLoader(
test_dataset,
sampler=test_sampler,
batch_size=self.args.eval_batch_size,
collate_fn=self.data_collator,
drop_last=self.args.dataloader_drop_last,
worker_init_fn=np.random.seed(self.args.seed)
)
def create_optimizer_and_scheduler(self, num_training_steps: int):
"""
Setup the optimizer and the learning rate scheduler.
We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
Trainer's init through :obj:`optimizers`, or subclass and override this method in a subclass.
"""
if self.optimizer is None:
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in self.model.named_parameters() if (not any(nd in n for nd in no_decay)) and p.requires_grad],
"weight_decay": self.args.weight_decay,
},
{
"params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay) and p.requires_grad],
"weight_decay": 0.0,
},
]
self.optimizer = AdamW(
optimizer_grouped_parameters,
lr=self.args.learning_rate,
betas=(self.args.adam_beta1, self.args.adam_beta2),
eps=self.args.adam_epsilon,
)
# for n, p in self.model.named_parameters():
# print(n,p.requires_grad)
print(self.optimizer.state_dict())
if self.lr_scheduler is None:
self.lr_scheduler = get_linear_schedule_with_warmup(
self.optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=num_training_steps
)
def setup_wandb(self):
"""
Setup the optional Weights & Biases (`wandb`) integration.
One can subclass and override this method to customize the setup if needed. Find more information
`here <https://docs.wandb.com/huggingface>`__. You can also override the following environment variables:
Environment:
WANDB_WATCH:
(Optional, ["gradients", "all", "false"]) "gradients" by default, set to "false" to disable gradient logging
or "all" to log gradients and parameters
WANDB_PROJECT:
(Optional): str - "huggingface" by default, set this to a custom string to store results in a different project
WANDB_DISABLED:
(Optional): boolean - defaults to false, set to "true" to disable wandb entirely
"""
if hasattr(self, "_setup_wandb"):
warnings.warn(
"The `_setup_wandb` method is deprecated and won't be called in a future version, define `setup_wandb` in your subclass.",
FutureWarning,
)
return self._setup_wandb()
if self.is_world_process_zero():
logger.info(
'Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"'
)
try:
combined_dict = {**self.model.config.to_dict(), **self.args.to_sanitized_dict()}
except AttributeError:
# in case the model has no config
combined_dict = {**self.args.to_sanitized_dict()}
wandb.init(
project=os.getenv("WANDB_PROJECT", "huggingface"), config=combined_dict, name=self.args.run_name
)
# keep track of model topology and gradients, unsupported on TPU
if not is_torch_tpu_available() and os.getenv("WANDB_WATCH") != "false":
wandb.watch(
self.model, log=os.getenv("WANDB_WATCH", "gradients"), log_freq=max(100, self.args.logging_steps)
)
def setup_comet(self):
"""
Setup the optional Comet.ml integration.
Environment:
COMET_MODE:
(Optional): str - "OFFLINE", "ONLINE", or "DISABLED"
COMET_PROJECT_NAME:
(Optional): str - Comet.ml project name for experiments
COMET_OFFLINE_DIRECTORY:
(Optional): str - folder to use for saving offline experiments when `COMET_MODE` is "OFFLINE"
For a number of configurable items in the environment,
see `here <https://www.comet.ml/docs/python-sdk/advanced/#comet-configuration-variables>`__
"""
if self.is_world_master():
comet_mode = os.getenv("COMET_MODE", "ONLINE").upper()
args = {"project_name": os.getenv("COMET_PROJECT_NAME", "huggingface")}
experiment = None
if comet_mode == "ONLINE":
experiment = comet_ml.Experiment(**args)
logger.info("Automatic Comet.ml online logging enabled")
elif comet_mode == "OFFLINE":
args["offline_directory"] = os.getenv("COMET_OFFLINE_DIRECTORY", "./")
experiment = comet_ml.OfflineExperiment(**args)
logger.info("Automatic Comet.ml offline logging enabled; use `comet upload` when finished")
if experiment is not None:
experiment._set_model_graph(self.model, framework="transformers")
experiment._log_parameters(self.args, prefix="args/", framework="transformers")
experiment._log_parameters(self.model.config, prefix="config/", framework="transformers")
def num_examples(self, dataloader: DataLoader) -> int:
"""
Helper to get number of samples in a :class:`~torch.utils.data.DataLoader` by accessing its dataset.
"""
return len(dataloader.dataset)
def _setup_loggers(self):
if self._loggers_initialized:
return
if is_wandb_available():
self.setup_wandb()
elif os.environ.get("WANDB_DISABLED") != "true":
logger.info(
"You are instantiating a Trainer but W&B is not installed. To use wandb logging, "
"run `pip install wandb; wandb login` see https://docs.wandb.com/huggingface."
)
if is_comet_available():
self.setup_comet()
elif os.environ.get("COMET_MODE") != "DISABLED":
logger.info(
"To use comet_ml logging, run `pip/conda install comet_ml` "
"see https://www.comet.ml/docs/python-sdk/huggingface/"
)
self._loggers_initialized = True
def _hp_search_setup(self, trial: Union["optuna.Trial", Dict[str, Any]]):
""" HP search setup code """
if self.hp_search_backend is None or trial is None:
return
params = self.hp_space(trial) if self.hp_search_backend == HPSearchBackend.OPTUNA else trial
for key, value in params.items():
if not hasattr(self.args, key):
raise AttributeError(
f"Trying to set {key} in the hyperparameter search but there is no corresponding field in `TrainingArguments`."
)
old_attr = getattr(self.args, key, None)
# Casting value to the proper type
if old_attr is not None:
value = type(old_attr)(value)
setattr(self.args, key, value)
if self.hp_search_backend == HPSearchBackend.OPTUNA:
logger.info("Trial:", trial.params)
def _report_to_hp_search(
self, trial: Union["optuna.Trial", Dict[str, Any]], epoch: int, metrics: Dict[str, float]
):
if self.hp_search_backend is None or trial is None:
return
self.objective = self.compute_objective(metrics)
if self.hp_search_backend == HPSearchBackend.OPTUNA:
trial.report(self.objective, epoch)
if trial.should_prune():
raise optuna.TrialPruned()
elif self.hp_search_backend == HPSearchBackend.RAY:
if self.global_step % self.args.save_steps == 0:
self._tune_save_checkpoint()
tune.report(objective=self.objective, **metrics)
def _tune_save_checkpoint(self):
if not self.use_tune_checkpoints:
return
with tune.checkpoint_dir(step=self.global_step) as checkpoint_dir:
self.args.output_dir = checkpoint_dir
output_dir = os.path.join(self.args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.global_step}")
self.save_model(output_dir)
if self.is_world_master():
torch.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
def train(self, model_path: Optional[str] = None, trial: Union["optuna.Trial", Dict[str, Any]] = None):
"""
Main training entry point.
Args:
model_path (:obj:`str`, `optional`):
Local path to the model if the model to train has been instantiated from a local path. If present,
training will resume from the optimizer/scheduler states loaded here.
trial (:obj:`optuna.Trial` or :obj:`Dict[str, Any]`, `optional`):
The trial run or the hyperparameter dictionary for hyperparameter search.
"""
# This might change the seed so needs to run first.
self._hp_search_setup(trial)
# Model re-init
if self.model_init is not None:
# Seed must be set before instantiating the model when using model_init.
set_seed(self.args.seed)
model = self.model_init()
self.model = model.to(self.args.device)
# Reinitializes optimizer and scheduler
self.optimizer, self.lr_scheduler = None, None
# Data loader and number of training steps
train_dataloader = self.get_train_dataloader()
num_update_steps_per_epoch = len(train_dataloader) // self.args.gradient_accumulation_steps
num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
if self.args.max_steps > 0:
t_total = self.args.max_steps
num_train_epochs = self.args.max_steps // num_update_steps_per_epoch + int(
self.args.max_steps % num_update_steps_per_epoch > 0
)
else:
t_total = int(num_update_steps_per_epoch * self.args.num_train_epochs)
num_train_epochs = self.args.num_train_epochs
self.args.max_steps = t_total
self.create_optimizer_and_scheduler(num_training_steps=t_total)
# Check if saved optimizer or scheduler states exist
if (
model_path is not None
and os.path.isfile(os.path.join(model_path, "optimizer.pt"))
and os.path.isfile(os.path.join(model_path, "scheduler.pt"))
):
# Load in optimizer and scheduler states
self.optimizer.load_state_dict(
torch.load(os.path.join(model_path, "optimizer.pt"), map_location=self.args.device)
)
self.lr_scheduler.load_state_dict(torch.load(os.path.join(model_path, "scheduler.pt")))
model = self.model
if self.args.fp16 and _use_apex:
if not is_apex_available():
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, self.optimizer = amp.initialize(model, self.optimizer, opt_level=self.args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if self.args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if self.args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[self.args.local_rank],
output_device=self.args.local_rank,
find_unused_parameters=True,
)
if self.tb_writer is not None:
self.tb_writer.add_text("args", self.args.to_json_string())
self.tb_writer.add_hparams(self.args.to_sanitized_dict(), metric_dict={})
# Train!
if is_torch_tpu_available():
total_train_batch_size = self.args.train_batch_size * xm.xrt_world_size()
else:
total_train_batch_size = (
self.args.train_batch_size
* self.args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if self.args.local_rank != -1 else 1)
)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", self.num_examples(train_dataloader))
logger.info(" Num Epochs = %d", num_train_epochs)
logger.info(" Instantaneous batch size per device = %d", self.args.per_device_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", total_train_batch_size)
logger.info(" Gradient Accumulation steps = %d", self.args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
self.global_step = 0
self.epoch = 0
self.total_flos = 0
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if model_path is not None:
# set global_step to global_step of last saved checkpoint from model path
try:
self.global_step = int(model_path.split("-")[-1].split(os.path.sep)[0])
# print(model, model.module)
if self.args.n_gpu > 1:
self.total_flos = getattr(model.module.config, "total_flos", 0)
else:
self.total_flos = getattr(model.config, "total_flos", 0)
epochs_trained = self.global_step // num_update_steps_per_epoch
steps_trained_in_current_epoch = self.global_step % (num_update_steps_per_epoch)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", self.global_step)
logger.info(" Continuing training from %d non-embedding floating-point operations", self.total_flos)
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
except ValueError:
self.global_step = 0
self.total_flos = 0
logger.info(" Starting fine-tuning.")
tr_loss = torch.tensor(0.0).to(self.args.device)
logging_loss_scalar = 0.0
model.zero_grad()
disable_tqdm = self.args.disable_tqdm or not self.is_local_process_zero()
train_pbar = trange(epochs_trained, int(np.ceil(num_train_epochs)), desc="Epoch", disable=disable_tqdm)
for epoch in range(epochs_trained, int(np.ceil(num_train_epochs))):
if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler):
train_dataloader.sampler.set_epoch(epoch)
if is_torch_tpu_available():
parallel_loader = pl.ParallelLoader(train_dataloader, [self.args.device]).per_device_loader(
self.args.device
)
epoch_iterator = parallel_loader
else:
epoch_iterator = train_dataloader
# Reset the past mems state at the beginning of each epoch if necessary.
if self.args.past_index >= 0:
self._past = None
epoch_pbar = tqdm(epoch_iterator, desc="Iteration", disable=disable_tqdm)
for step, inputs in enumerate(epoch_iterator):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
epoch_pbar.update(1)
continue
tr_loss += self.training_step(model, inputs)
self.total_flos += self.floating_point_ops(inputs)
if (step + 1) % self.args.gradient_accumulation_steps == 0 or (
# last step in epoch but step is always smaller than gradient_accumulation_steps
len(epoch_iterator) <= self.args.gradient_accumulation_steps
and (step + 1) == len(epoch_iterator)
):
if self.args.fp16 and _use_native_amp:
self.scaler.unscale_(self.optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), self.args.max_grad_norm)
elif self.args.fp16 and _use_apex:
torch.nn.utils.clip_grad_norm_(amp.master_params(self.optimizer), self.args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), self.args.max_grad_norm)
if is_torch_tpu_available():
xm.optimizer_step(self.optimizer)
elif self.args.fp16 and _use_native_amp:
self.scaler.step(self.optimizer)
self.scaler.update()
else:
self.optimizer.step()
# URGENT
self.lr_scheduler.step()
model.zero_grad()
self.global_step += 1
self.epoch = epoch + (step + 1) / len(epoch_iterator)
if (self.args.logging_steps > 0 and self.global_step % self.args.logging_steps == 0) or (
self.global_step == 1 and self.args.logging_first_step
):
logs: Dict[str, float] = {}
tr_loss_scalar = tr_loss.item()
logs["loss"] = (tr_loss_scalar - logging_loss_scalar) / self.args.logging_steps
# backward compatibility for pytorch schedulers
logs["learning_rate"] = (
self.lr_scheduler.get_last_lr()[0]
if version.parse(torch.__version__) >= version.parse("1.4")
else self.lr_scheduler.get_lr()[0]
)
logging_loss_scalar = tr_loss_scalar
self.log(logs)
# print(self.args.evaluation_strategy == EvaluationStrategy.STEPS )
# print(self.global_step % self.args.eval_steps == 0)
# print()
if (
self.args.evaluation_strategy == EvaluationStrategy.STEPS
and self.global_step % self.args.eval_steps == 0
):
metrics = self.evaluate()
self._report_to_hp_search(trial, epoch, metrics)
#############################EARLY STOPPING########################
if 'lowdata' in self.args.output_dir or 'earlystop' in self.args.output_dir:
self.save_based_on_eval = True
else:
self.save_based_on_eval = False
print('if not see a line lowdata: below, then did not go into low data. ')
if self.save_based_on_eval and metrics["eval_loss"] < self.curr_best_eval:
print('lowdata:', self.global_step, self.curr_best_eval, metrics["eval_loss"],
'perplexity={}'.format(math.exp(metrics["eval_loss"])))
self.curr_best_eval = metrics["eval_loss"]
if hasattr(model, "module"):
assert (
model.module is self.model
), f"Module {model.module} should be a reference to self.model"
else:
assert model is self.model, f"Model {model} should be a reference to self.model"
# Save model checkpoint
output_dir_name = os.path.basename(self.args.output_dir)
checkpoint_folder = f"{output_dir_name}-{PREFIX_CHECKPOINT_DIR}-{self.global_step}"
if self.hp_search_backend is not None and trial is not None:
run_id = (
trial.number
if self.hp_search_backend == HPSearchBackend.OPTUNA
else tune.get_trial_id()
)
checkpoint_folder += f"-run-{run_id}"
output_dir = os.path.join(self.args.output_dir, checkpoint_folder)
self.store_flos()
print('saving to output_dir', output_dir)
self.save_model(output_dir)
if self.is_world_process_zero():
self._rotate_checkpoints(use_mtime=True)
#####################################################
if self.args.save_steps > 0 and self.global_step % self.args.save_steps == 0:
print('saving model at a checkpoint!!')
# In all cases (even distributed/parallel), self.model is always a reference
# to the model we want to save.
if hasattr(model, "module"):
assert (
model.module is self.model
), f"Module {model.module} should be a reference to self.model"
else:
assert model is self.model, f"Model {model} should be a reference to self.model"
# Save model checkpoint
checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.global_step}"
if self.hp_search_backend is not None and trial is not None:
run_id = (
trial.number
if self.hp_search_backend == HPSearchBackend.OPTUNA
else tune.get_trial_id()
)
checkpoint_folder += f"-run-{run_id}"
output_dir = os.path.join(self.args.output_dir, checkpoint_folder)
self.store_flos()
self.save_model(output_dir)
if self.is_world_process_zero():
self._rotate_checkpoints(use_mtime=True)
if is_torch_tpu_available():
xm.rendezvous("saving_optimizer_states")
xm.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
xm.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
elif self.is_world_process_zero():
torch.save(self.optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
epoch_pbar.update(1)
if self.args.max_steps > 0 and self.global_step >= self.args.max_steps:
break
epoch_pbar.close()
train_pbar.update(1)
if self.args.evaluation_strategy == EvaluationStrategy.EPOCH:
metrics = self.evaluate()
self._report_to_hp_search(trial, epoch, metrics)
if self.args.tpu_metrics_debug or self.args.debug:
if is_torch_tpu_available():
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
else:
logger.warning(
"You enabled PyTorch/XLA debug metrics but you don't have a TPU "
"configured. Check your training configuration if this is unexpected."
)
if self.args.max_steps > 0 and self.global_step >= self.args.max_steps:
break
train_pbar.close()
if self.tb_writer:
self.tb_writer.close()
if self.args.past_index and hasattr(self, "_past"):
# Clean the state at the end of training
delattr(self, "_past")
logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n")
return TrainOutput(self.global_step, tr_loss.item() / self.global_step)
def hyperparameter_search(
self,
hp_space: Optional[Callable[["optuna.Trial"], Dict[str, float]]] = None,
compute_objective: Optional[Callable[[Dict[str, float]], float]] = None,
n_trials: int = 20,
direction: str = "minimize",
backend: Optional[Union["str", HPSearchBackend]] = None,
**kwargs
) -> BestRun:
"""
Launch an hyperparameter search using ``optuna`` or ``Ray Tune``. The optimized quantity is determined by
:obj:`compute_objectie`, which defaults to a function returning the evaluation loss when no metric is provided,
the sum of all metrics otherwise.
.. warning::
To use this method, you need to have provided a ``model_init`` when initializing your
:class:`~transformers.Trainer`: we need to reinitialize the model at each new run. This is incompatible
with the ``optimizers`` argument, so you need to subclass :class:`~transformers.Trainer` and override the
method :meth:`~transformers.Trainer.create_optimizer_and_scheduler` for custom optimizer/scheduler.
Args:
hp_space (:obj:`Callable[["optuna.Trial"], Dict[str, float]]`, `optional`):
A function that defines the hyperparameter search space. Will default to
:func:`~transformers.trainer_utils.default_hp_space_optuna` or
:func:`~transformers.trainer_utils.default_hp_space_ray` depending on your backend.
compute_objective (:obj:`Callable[[Dict[str, float]], float]`, `optional`):
A function computing the objective to minimize or maximize from the metrics returned by the
:obj:`evaluate` method. Will default to :func:`~transformers.trainer_utils.default_compute_objective`.
n_trials (:obj:`int`, `optional`, defaults to 100):
The number of trial runs to test.
direction(:obj:`str`, `optional`, defaults to :obj:`"minimize"`):
Whether to optimize greater or lower objects. Can be :obj:`"minimize"` or :obj:`"maximize"`, you should
pick :obj:`"minimize"` when optimizing the validation loss, :obj:`"maximize"` when optimizing one or
several metrics.
backend(:obj:`str` or :class:`~transformers.training_utils.HPSearchBackend`, `optional`):
The backend to use for hyperparameter search. Will default to optuna or Ray Tune, depending on which
one is installed. If both are installed, will default to optuna.
kwargs:
Additional keyword arguments passed along to :obj:`optuna.create_study` or :obj:`ray.tune.run`. For
more information see:
- the documentation of `optuna.create_study <https://optuna.readthedocs.io/en/stable/reference/alias_generated/optuna.create_study.html#optuna.create_study>`__
- the documentation of `tune.run <https://docs.ray.io/en/latest/tune/api_docs/execution.html#tune-run>`__
Returns:
:class:`transformers.trainer_utils.BestRun`: All the informations about the best run.
"""
if backend is None:
backend = default_hp_search_backend()
if backend is None:
raise RuntimeError(
"At least one of optuna or ray should be installed. "
"To install optuna run `pip install optuna`."
"To install ray run `pip install ray[tune]`."
)
backend = HPSearchBackend(backend)
if backend == HPSearchBackend.OPTUNA and not is_optuna_available():
raise RuntimeError("You picked the optuna backend, but it is not installed. Use `pip install optuna`.")
if backend == HPSearchBackend.RAY and not is_ray_available():
raise RuntimeError(
"You picked the Ray Tune backend, but it is not installed. Use `pip install 'ray[tune]'`."
)
self.hp_search_backend = backend
if self.model_init is None:
raise RuntimeError(
"To use hyperparameter search, you need to pass your model through a model_init function."
)
self.hp_space = default_hp_space[backend] if hp_space is None else hp_space
self.compute_objective = default_compute_objective if compute_objective is None else compute_objective
run_hp_search = run_hp_search_optuna if backend == HPSearchBackend.OPTUNA else run_hp_search_ray
best_run = run_hp_search(self, n_trials, direction, **kwargs)
self.hp_search_backend = None
return best_run
def log(self, logs: Dict[str, float], iterator: Optional[tqdm] = None) -> None:
"""
Log :obj:`logs` on the various objects watching training.
Subclass and override this method to inject custom behavior.
Args:
logs (:obj:`Dict[str, float]`):
The values to log.
iterator (:obj:`tqdm`, `optional`):
A potential tqdm progress bar to write the logs on.
"""
# Set up loggers like W&B or Comet ML
self._setup_loggers()
if hasattr(self, "_log"):
warnings.warn(
"The `_log` method is deprecated and won't be called in a future version, define `log` in your subclass.",
FutureWarning,
)
return self._log(logs, iterator=iterator)
if self.epoch is not None:
logs["epoch"] = self.epoch
if self.total_flos is not None:
if self.args.local_rank != -1:
total_flos = distributed_broadcast_scalars([self.total_flos]).sum().item()
else:
total_flos = self.total_flos
if total_flos > 0:
logs["total_flos"] = self.total_flos
if self.global_step is None:
# when logging evaluation metrics without training
self.global_step = 0
if self.tb_writer:
for k, v in logs.items():
if isinstance(v, (int, float)):
self.tb_writer.add_scalar(k, v, self.global_step)
else:
logger.warning(
"Trainer is attempting to log a value of "
'"%s" of type %s for key "%s" as a scalar. '
"This invocation of Tensorboard's writer.add_scalar() "
"is incorrect so we dropped this attribute.",
v,
type(v),
k,
)
self.tb_writer.flush()
if is_wandb_available():
if self.is_world_process_zero():
wandb.log(logs, step=self.global_step)
if is_comet_available():
if self.is_world_process_zero():
experiment = comet_ml.config.get_global_experiment()
if experiment is not None:
experiment._log_metrics(logs, step=self.global_step, epoch=self.epoch, framework="transformers")
output = {**logs, **{"step": self.global_step}}
if self.is_world_process_zero():
self.log_history.append(output)
if iterator is not None:
iterator.write(output)
else:
print(output)
def _prepare_inputs(self, inputs: Dict[str, Union[torch.Tensor, Any]]) -> Dict[str, Union[torch.Tensor, Any]]:
"""
Prepare :obj:`inputs` before feeding them to the model, converting them to tensors if they are not already and
handling potential state.
"""
for k, v in inputs.items():
if isinstance(v, torch.Tensor):
inputs[k] = v.to(self.args.device)
if self.args.past_index >= 0 and self._past is not None:
assert False
inputs["mems"] = self._past
return inputs
def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor:
"""
Perform a training step on a batch of inputs.
Subclass and override to inject custom behavior.
Args:
model (:obj:`nn.Module`):
The model to train.
inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
The inputs and targets of the model.
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
argument :obj:`labels`. Check your model's documentation for all accepted arguments.
Return:
:obj:`torch.Tensor`: The tensor with training loss on this batch.
"""
if hasattr(self, "_training_step"):
warnings.warn(
"The `_training_step` method is deprecated and won't be called in a future version, define `training_step` in your subclass.",
FutureWarning,
)
return self._training_step(model, inputs, self.optimizer)
model.train()
if self.use_dropout:
if self.gpt2 is not None:
self.gpt2.train()
inputs = self._prepare_inputs(inputs)
if self.args.fp16 and _use_native_amp:
with autocast():
if self.distill:
loss = self.compute_loss_distill(model, inputs, gpt2_model=self.gpt2, )
else:
loss = self.compute_loss(model, inputs, gpt2_model=self.gpt2)
else:
if self.distill:
loss = self.compute_loss_distill(model, inputs, gpt2_model=self.gpt2)
else:
loss = self.compute_loss(model, inputs, gpt2_model=self.gpt2)
if self.args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if self.args.gradient_accumulation_steps > 1:
loss = loss / self.args.gradient_accumulation_steps
if self.args.fp16 and _use_native_amp:
self.scaler.scale(loss).backward()
elif self.args.fp16 and _use_apex:
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
else:
# print(loss)
loss.backward()
# print('max allocated_memory:', torch.cuda.max_memory_allocated(0), 'total_memory:', torch.cuda.get_device_properties(0).total_memory,
# 'percentage', torch.cuda.max_memory_allocated(0)/torch.cuda.get_device_properties(0).total_memory)
return loss.detach()
def compute_loss(self, model, inputs, gpt2_model=None):
"""
How the loss is computed by Trainer. By default, all models return the loss in the first element.
Subclass and override for custom behavior.
"""
# outputs = model.forward_weighted(**inputs)
if 'prompt_lab' in inputs:
prompt_lab_ = inputs['prompt_lab']
k = torch.cat(self.discri_labels_code, dim=0)
inputs['control_code'] = torch.index_select(k, 0, prompt_lab_)
del inputs['prompt_lab']
outputs = model(**inputs, gpt2_model=gpt2_model)
# Save past state if it exists
if self.args.past_index >= 0:
self._past = outputs[self.args.past_index]
# print(outputs[0])
# We don't use .loss here since the model may return tuples instead of ModelOutput.
# print(outputs[0], outputs.loss)
# URGENT
# print('compute_loss', outputs[0])
return outputs[0].mean()
def compute_loss_distill(self, model, inputs, gpt2_model=None):
"""
How the loss is computed by Trainer. By default, all models return the loss in the first element.
Subclass and override for custom behavior.
"""
# outputs = model.forward_weighted(**inputs)
with torch.no_grad():
output_finetuned = self.finetuned_gpt2(**inputs)
outputs = model(**inputs, gpt2_model=gpt2_model)
# Save past state if it exists
if self.args.past_index >= 0:
self._past = outputs[self.args.past_index]
if self.matching_objective == 'kl':
# distrib_finetuned=torch.log_softmax(output_finetuned.logits[:,:,:-2], dim=-1) #bsz, seqlen, vocab
distrib_finetuned=torch.log_softmax(output_finetuned.logits, dim=-1) #bsz, seqlen, vocab
distrib_prefix = torch.log_softmax(outputs.logits, dim=-1) # bsz, seqlen, vocab
loss = torch.sum(distrib_finetuned.exp() * (distrib_finetuned - distrib_prefix), dim=-1) #bsz, seqlen
elif self.matching_objective == 'logits':
loss = torch.norm(output_finetuned.logits - outputs.logits, dim=-1) #bsz, seqlen
# loss = torch.norm(output_finetuned.logits[:,:,:-2] - outputs.logits, dim=-1) #bsz, seqlen
elif self.matching_objective == 'last_layer':
activation_diff = output_finetuned.last_hidden_state - outputs.last_hidden_state
loss = torch.norm(activation_diff, dim=-1) # bsz, seqlen
else:
assert False, "invalid matching_objective"
return loss.sum(dim=-1).mean()
def is_local_master(self) -> bool:
"""
Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on
several machines) main process.
.. warning::
This method is deprecated, use :meth:`~transformers.Trainer.is_local_process_zero` instead.
"""
warnings.warn("This method is deprecated, use `Trainer.is_local_process_zero()` instead.", FutureWarning)
return self.is_local_process_zero()
def is_local_process_zero(self) -> bool:
"""
Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on
several machines) main process.
"""
if is_torch_tpu_available():
return xm.is_master_ordinal(local=True)
else:
return self.args.local_rank in [-1, 0]
def is_world_master(self) -> bool:
"""
Whether or not this process is the global main process (when training in a distributed fashion on
several machines, this is only going to be :obj:`True` for one process).
.. warning::
This method is deprecated, use :meth:`~transformers.Trainer.is_world_process_zero` instead.
"""
warnings.warn("This method is deprecated, use `Trainer.is_world_process_zero()` instead.", FutureWarning)
return self.is_world_process_zero()
def is_world_process_zero(self) -> bool:
"""
Whether or not this process is the global main process (when training in a distributed fashion on
several machines, this is only going to be :obj:`True` for one process).
"""
if is_torch_tpu_available():
return xm.is_master_ordinal(local=False)
else:
return self.args.local_rank == -1 or torch.distributed.get_rank() == 0
def save_model(self, output_dir: Optional[str] = None):
"""
Will save the model, so you can reload it using :obj:`from_pretrained()`.
Will only save from the world_master process (unless in TPUs).
"""
if is_torch_tpu_available():
self._save_tpu(output_dir)
elif self.is_world_process_zero():
self._save(output_dir)
def _save_tpu(self, output_dir: Optional[str] = None):
output_dir = output_dir if output_dir is not None else self.args.output_dir
logger.info("Saving model checkpoint to %s", output_dir)
if xm.is_master_ordinal():
os.makedirs(output_dir, exist_ok=True)
torch.save(self.args, os.path.join(output_dir, "training_args.bin"))
json.dump(
self.log_history, open(os.path.join(output_dir, "log_history.json"), "w"), indent=2, ensure_ascii=False
)
# Save a trained model and configuration using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
if not isinstance(self.model, PreTrainedModel):
raise ValueError("Trainer.model appears to not be a PreTrainedModel")
xm.rendezvous("saving_checkpoint")
self.model.save_pretrained(output_dir)
if self.tokenizer is not None:
self.tokenizer.save_pretrained(output_dir)
def _save(self, output_dir: Optional[str] = None):
output_dir = output_dir if output_dir is not None else self.args.output_dir
os.makedirs(output_dir, exist_ok=True)
logger.info("Saving model checkpoint to %s", output_dir)
# Save a trained model and configuration using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
if not isinstance(self.model, PreTrainedModel):
raise ValueError("Trainer.model appears to not be a PreTrainedModel")
self.model.save_pretrained(output_dir)
if self.tokenizer is not None:
self.tokenizer.save_pretrained(output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(self.args, os.path.join(output_dir, "training_args.bin"))
json.dump(
self.log_history, open(os.path.join(output_dir, "log_history.json"), "w"), indent=2, ensure_ascii=False
)
def store_flos(self):
# Storing the number of floating-point operations that went into the model
if self.total_flos is not None:
if self.args.local_rank != -1:
total_flos = distributed_broadcast_scalars([self.total_flos]).sum().item()
else:
total_flos = self.total_flos
if total_flos > 0:
self.model.config.total_flos = total_flos
def _sorted_checkpoints(self, checkpoint_prefix=PREFIX_CHECKPOINT_DIR, use_mtime=False) -> List[str]:
output_dir_name = os.path.basename(self.args.output_dir)
checkpoint_prefix = f"{output_dir_name}-{PREFIX_CHECKPOINT_DIR}"
ordering_and_checkpoint_path = []
glob_checkpoints = [str(x) for x in Path(self.args.output_dir).glob(f"{checkpoint_prefix}-*")]
for path in glob_checkpoints:
if use_mtime:
ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
else:
regex_match = re.match(f".*{checkpoint_prefix}-([0-9]+)", path)
if regex_match and regex_match.groups():
ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))
checkpoints_sorted = sorted(ordering_and_checkpoint_path)
checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
return checkpoints_sorted
def _rotate_checkpoints(self, use_mtime=False) -> None:
if self.args.save_total_limit is None or self.args.save_total_limit <= 0:
return
# Check if we should delete older checkpoint(s)
checkpoints_sorted = self._sorted_checkpoints(use_mtime=use_mtime)
if len(checkpoints_sorted) <= self.args.save_total_limit:
return
number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - self.args.save_total_limit)
checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
for checkpoint in checkpoints_to_be_deleted:
logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
shutil.rmtree(checkpoint)
def evaluate(self, eval_dataset: Optional[Dataset] = None) -> Dict[str, float]:
"""
Run evaluation and returns metrics.
The calling script will be responsible for providing a method to compute metrics, as they are
task-dependent (pass it to the init :obj:`compute_metrics` argument).
You can also subclass and override this method to inject custom behavior.
Args:
eval_dataset (:obj:`Dataset`, `optional`):
Pass a dataset if you wish to override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`,
columns not accepted by the ``model.forward()`` method are automatically removed.
Returns:
A dictionary containing the evaluation loss and the potential metrics computed from the predictions.
"""
eval_dataloader = self.get_eval_dataloader(eval_dataset)
output = self.prediction_loop(eval_dataloader, description="Evaluation")
self.log(output.metrics)
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
return output.metrics
def predict(self, test_dataset: Dataset) -> PredictionOutput:
"""
Run prediction and returns predictions and potential metrics.
Depending on the dataset and your use case, your test dataset may contain labels.
In that case, this method will also return metrics, like in :obj:`evaluate()`.
Args:
test_dataset (:obj:`Dataset`):
Dataset to run the predictions on. If it is an :obj:`datasets.Dataset`, columns not accepted by the
``model.forward()`` method are automatically removed.
Returns:
`NamedTuple`:
predictions (:obj:`np.ndarray`):
The predictions on :obj:`test_dataset`.
label_ids (:obj:`np.ndarray`, `optional`):
The labels (if the dataset contained some).
metrics (:obj:`Dict[str, float]`, `optional`):
The potential dictionary of metrics (if the dataset contained labels).
"""
test_dataloader = self.get_test_dataloader(test_dataset)
return self.prediction_loop(test_dataloader, description="Prediction")
def prediction_loop(
self, dataloader: DataLoader, description: str, prediction_loss_only: Optional[bool] = None
) -> PredictionOutput:
"""
Prediction/evaluation loop, shared by :obj:`Trainer.evaluate()` and :obj:`Trainer.predict()`.
Works both with or without labels.
"""
if hasattr(self, "_prediction_loop"):
warnings.warn(
"The `_prediction_loop` method is deprecated and won't be called in a future version, define `prediction_loop` in your subclass.",
FutureWarning,
)
return self._prediction_loop(dataloader, description, prediction_loss_only=prediction_loss_only)
prediction_loss_only = (
prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only
)
assert not getattr(
self.model.config, "output_attentions", False
), "The prediction loop does not work with `output_attentions=True`."
assert not getattr(
self.model.config, "output_hidden_states", False
), "The prediction loop does not work with `output_hidden_states=True`."
model = self.model
# multi-gpu eval
if self.args.n_gpu > 1:
model = torch.nn.DataParallel(model)
else:
model = self.model
# Note: in torch.distributed mode, there's no point in wrapping the model
# inside a DistributedDataParallel as we'll be under `no_grad` anyways.
batch_size = dataloader.batch_size
logger.info("***** Running %s *****", description)
logger.info(" Num examples = %d", self.num_examples(dataloader))
logger.info(" Batch size = %d", batch_size)
eval_losses: List[float] = []
preds: torch.Tensor = None
label_ids: torch.Tensor = None
entropy_losses: List[float] = []
model.eval()
if self.gpt2 is not None:
self.gpt2.eval()
print(model.training)
print(self.gpt2.training)
if is_torch_tpu_available():
dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device)
if self.args.past_index >= 0:
self._past = None
disable_tqdm = not self.is_local_process_zero() or self.args.disable_tqdm
for inputs in tqdm(dataloader, desc=description, disable=disable_tqdm):
loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only)
batch_size = inputs[list(inputs.keys())[0]].shape[0]
if loss is not None:
eval_losses.extend([loss] * batch_size)
if logits is not None:
preds = logits if preds is None else nested_concat(preds, logits, dim=0)
temp_logits = [torch.log_softmax(x) for x in logits]
entropy_losses.extend([(x.exp() * x).sum() for x in temp_logits])
if labels is not None:
label_ids = labels if label_ids is None else nested_concat(label_ids, labels, dim=0)
if self.args.past_index and hasattr(self, "_past"):
# Clean the state at the end of the evaluation loop
delattr(self, "_past")
if self.compute_metrics is not None and preds is not None and label_ids is not None:
metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids))
else:
metrics = {}
# Prefix all keys with eval_
for key in list(metrics.keys()):
if not key.startswith("eval_"):
metrics[f"eval_{key}"] = metrics.pop(key)
if len(entropy_losses) > 0:
metrics['entropy'] = np.mean(entropy_losses)
print('entropy', metrics['entropy'] )
return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics)
def prediction_step(
self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]], prediction_loss_only: bool
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
"""
Perform an evaluation step on :obj:`model` using obj:`inputs`.
Subclass and override to inject custom behavior.
Args:
model (:obj:`nn.Module`):
The model to evaluate.
inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
The inputs and targets of the model.
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
argument :obj:`labels`. Check your model's documentation for all accepted arguments.
prediction_loss_only (:obj:`bool`):
Whether or not to return the loss only.
Return:
Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
A tuple with the loss, logits and labels (each being optional).
"""
has_labels = all(inputs.get(k) is not None for k in self.args.label_names)
inputs = self._prepare_inputs(inputs)
# At eval time, set the weights to 1/bsz. and see the results..
# if 'weights' in inputs:
# weights = inputs['weights']
# bsz = weights.view(-1).shape[0]
# weights = (torch.ones(weights.shape)/bsz).to(weights.device)
# inputs['weights'] = weights
with torch.no_grad():
# outputs = model.forward_weighted(**inputs)
outputs = model(**inputs, gpt2_model=self.gpt2)
if has_labels:
# The .mean() is to reduce in case of distributed training
loss = outputs[0].mean().item()
logits = outputs[1:]
else:
loss = None
# Slicing so we get a tuple even if `outputs` is a `ModelOutput`.
logits = outputs[:]
if self.args.past_index >= 0:
self._past = outputs[self.args.past_index if has_labels else self.args.past_index - 1]
if prediction_loss_only:
return (loss, None, None)
logits = tuple(logit.detach() for logit in logits)
if len(logits) == 1:
logits = logits[0]
if has_labels:
labels = tuple(inputs.get(name).detach() for name in self.args.label_names)
if len(labels) == 1:
labels = labels[0]
else:
labels = None
return (loss, logits, labels)
def floating_point_ops(self, inputs: Dict[str, Union[torch.Tensor, Any]]):
"""
For models that inherit from :class:`~transformers.PretrainedModel`, uses
that method to compute the number of floating point operations for every backward + forward pass. If using
another model, either implement such a method in the model or subclass and override this method.
Args:
model (:obj:`nn.Module`):
The model to evaluate.
inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
The inputs and targets of the model.
Returns:
:obj:`int`: The number of floating-point operations.
"""
if isinstance(self.model, torch.nn.DataParallel) or isinstance(
self.model, torch.nn.parallel.DistributedDataParallel
):
model = self.model.module
else:
model = self.model
if hasattr(model, "floating_point_ops"):
return model.floating_point_ops(inputs)
else:
return 0 |