Spaces:
Runtime error
Runtime error
File size: 11,048 Bytes
7734d5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import numpy as np
import torch
import cv2
import os
from .reid_model import Extractor
from yolox.deepsort_tracker import kalman_filter, linear_assignment, iou_matching
from yolox.data.dataloading import get_yolox_datadir
from .detection import Detection
from .track import Track
def _cosine_distance(a, b, data_is_normalized=False):
if not data_is_normalized:
a = np.asarray(a) / np.linalg.norm(a, axis=1, keepdims=True)
b = np.asarray(b) / np.linalg.norm(b, axis=1, keepdims=True)
return 1. - np.dot(a, b.T)
def _nn_cosine_distance(x, y):
distances = _cosine_distance(x, y)
return distances.min(axis=0)
class Tracker:
def __init__(self, metric, max_iou_distance=0.7, max_age=70, n_init=3):
self.metric = metric
self.max_iou_distance = max_iou_distance
self.max_age = max_age
self.n_init = n_init
self.kf = kalman_filter.KalmanFilter()
self.tracks = []
self._next_id = 1
def predict(self):
"""Propagate track state distributions one time step forward.
This function should be called once every time step, before `update`.
"""
for track in self.tracks:
track.predict(self.kf)
def increment_ages(self):
for track in self.tracks:
track.increment_age()
track.mark_missed()
def update(self, detections, classes):
"""Perform measurement update and track management.
Parameters
----------
detections : List[deep_sort.detection.Detection]
A list of detections at the current time step.
"""
# Run matching cascade.
matches, unmatched_tracks, unmatched_detections = \
self._match(detections)
# Update track set.
for track_idx, detection_idx in matches:
self.tracks[track_idx].update(
self.kf, detections[detection_idx])
for track_idx in unmatched_tracks:
self.tracks[track_idx].mark_missed()
for detection_idx in unmatched_detections:
self._initiate_track(detections[detection_idx], classes[detection_idx].item())
self.tracks = [t for t in self.tracks if not t.is_deleted()]
# Update distance metric.
active_targets = [t.track_id for t in self.tracks if t.is_confirmed()]
features, targets = [], []
for track in self.tracks:
if not track.is_confirmed():
continue
features += track.features
targets += [track.track_id for _ in track.features]
track.features = []
self.metric.partial_fit(
np.asarray(features), np.asarray(targets), active_targets)
def _match(self, detections):
def gated_metric(tracks, dets, track_indices, detection_indices):
features = np.array([dets[i].feature for i in detection_indices])
targets = np.array([tracks[i].track_id for i in track_indices])
cost_matrix = self.metric.distance(features, targets)
cost_matrix = linear_assignment.gate_cost_matrix(
self.kf, cost_matrix, tracks, dets, track_indices,
detection_indices)
return cost_matrix
# Split track set into confirmed and unconfirmed tracks.
confirmed_tracks = [
i for i, t in enumerate(self.tracks) if t.is_confirmed()]
unconfirmed_tracks = [
i for i, t in enumerate(self.tracks) if not t.is_confirmed()]
# Associate confirmed tracks using appearance features.
matches_a, unmatched_tracks_a, unmatched_detections = \
linear_assignment.matching_cascade(
gated_metric, self.metric.matching_threshold, self.max_age,
self.tracks, detections, confirmed_tracks)
# Associate remaining tracks together with unconfirmed tracks using IOU.
iou_track_candidates = unconfirmed_tracks + [
k for k in unmatched_tracks_a if
self.tracks[k].time_since_update == 1]
unmatched_tracks_a = [
k for k in unmatched_tracks_a if
self.tracks[k].time_since_update != 1]
matches_b, unmatched_tracks_b, unmatched_detections = \
linear_assignment.min_cost_matching(
iou_matching.iou_cost, self.max_iou_distance, self.tracks,
detections, iou_track_candidates, unmatched_detections)
matches = matches_a + matches_b
unmatched_tracks = list(set(unmatched_tracks_a + unmatched_tracks_b))
return matches, unmatched_tracks, unmatched_detections
def _initiate_track(self, detection, class_id):
mean, covariance = self.kf.initiate(detection.to_xyah())
self.tracks.append(Track(
mean, covariance, self._next_id, class_id, self.n_init, self.max_age,
detection.feature))
self._next_id += 1
class NearestNeighborDistanceMetric(object):
def __init__(self, metric, matching_threshold, budget=None):
if metric == "cosine":
self._metric = _nn_cosine_distance
else:
raise ValueError(
"Invalid metric; must be either 'euclidean' or 'cosine'")
self.matching_threshold = matching_threshold
self.budget = budget
self.samples = {}
def partial_fit(self, features, targets, active_targets):
for feature, target in zip(features, targets):
self.samples.setdefault(target, []).append(feature)
if self.budget is not None:
self.samples[target] = self.samples[target][-self.budget:]
self.samples = {k: self.samples[k] for k in active_targets}
def distance(self, features, targets):
cost_matrix = np.zeros((len(targets), len(features)))
for i, target in enumerate(targets):
cost_matrix[i, :] = self._metric(self.samples[target], features)
return cost_matrix
class DeepSort(object):
def __init__(self, model_path, max_dist=0.1, min_confidence=0.3, nms_max_overlap=1.0, max_iou_distance=0.7, max_age=30, n_init=3, nn_budget=100, use_cuda=True):
self.min_confidence = min_confidence
self.nms_max_overlap = nms_max_overlap
self.extractor = Extractor(model_path, use_cuda=use_cuda)
max_cosine_distance = max_dist
metric = NearestNeighborDistanceMetric(
"cosine", max_cosine_distance, nn_budget)
self.tracker = Tracker(
metric, max_iou_distance=max_iou_distance, max_age=max_age, n_init=n_init)
def update(self, output_results, img_info, img_size, img_file_name):
img_file_name = os.path.join(get_yolox_datadir(), 'mot', 'train', img_file_name)
ori_img = cv2.imread(img_file_name)
self.height, self.width = ori_img.shape[:2]
# post process detections
output_results = output_results.cpu().numpy()
confidences = output_results[:, 4] * output_results[:, 5]
bboxes = output_results[:, :4] # x1y1x2y2
img_h, img_w = img_info[0], img_info[1]
scale = min(img_size[0] / float(img_h), img_size[1] / float(img_w))
bboxes /= scale
bbox_xyxy = bboxes
bbox_tlwh = self._xyxy_to_tlwh_array(bbox_xyxy)
remain_inds = confidences > self.min_confidence
bbox_tlwh = bbox_tlwh[remain_inds]
confidences = confidences[remain_inds]
# generate detections
features = self._get_features(bbox_tlwh, ori_img)
detections = [Detection(bbox_tlwh[i], conf, features[i]) for i, conf in enumerate(
confidences) if conf > self.min_confidence]
classes = np.zeros((len(detections), ))
# run on non-maximum supression
boxes = np.array([d.tlwh for d in detections])
scores = np.array([d.confidence for d in detections])
# update tracker
self.tracker.predict()
self.tracker.update(detections, classes)
# output bbox identities
outputs = []
for track in self.tracker.tracks:
if not track.is_confirmed() or track.time_since_update > 1:
continue
box = track.to_tlwh()
x1, y1, x2, y2 = self._tlwh_to_xyxy_noclip(box)
track_id = track.track_id
class_id = track.class_id
outputs.append(np.array([x1, y1, x2, y2, track_id, class_id], dtype=np.int))
if len(outputs) > 0:
outputs = np.stack(outputs, axis=0)
return outputs
"""
TODO:
Convert bbox from xc_yc_w_h to xtl_ytl_w_h
Thanks JieChen91@github.com for reporting this bug!
"""
@staticmethod
def _xywh_to_tlwh(bbox_xywh):
if isinstance(bbox_xywh, np.ndarray):
bbox_tlwh = bbox_xywh.copy()
elif isinstance(bbox_xywh, torch.Tensor):
bbox_tlwh = bbox_xywh.clone()
bbox_tlwh[:, 0] = bbox_xywh[:, 0] - bbox_xywh[:, 2] / 2.
bbox_tlwh[:, 1] = bbox_xywh[:, 1] - bbox_xywh[:, 3] / 2.
return bbox_tlwh
@staticmethod
def _xyxy_to_tlwh_array(bbox_xyxy):
if isinstance(bbox_xyxy, np.ndarray):
bbox_tlwh = bbox_xyxy.copy()
elif isinstance(bbox_xyxy, torch.Tensor):
bbox_tlwh = bbox_xyxy.clone()
bbox_tlwh[:, 2] = bbox_xyxy[:, 2] - bbox_xyxy[:, 0]
bbox_tlwh[:, 3] = bbox_xyxy[:, 3] - bbox_xyxy[:, 1]
return bbox_tlwh
def _xywh_to_xyxy(self, bbox_xywh):
x, y, w, h = bbox_xywh
x1 = max(int(x - w / 2), 0)
x2 = min(int(x + w / 2), self.width - 1)
y1 = max(int(y - h / 2), 0)
y2 = min(int(y + h / 2), self.height - 1)
return x1, y1, x2, y2
def _tlwh_to_xyxy(self, bbox_tlwh):
"""
TODO:
Convert bbox from xtl_ytl_w_h to xc_yc_w_h
Thanks JieChen91@github.com for reporting this bug!
"""
x, y, w, h = bbox_tlwh
x1 = max(int(x), 0)
x2 = min(int(x+w), self.width - 1)
y1 = max(int(y), 0)
y2 = min(int(y+h), self.height - 1)
return x1, y1, x2, y2
def _tlwh_to_xyxy_noclip(self, bbox_tlwh):
"""
TODO:
Convert bbox from xtl_ytl_w_h to xc_yc_w_h
Thanks JieChen91@github.com for reporting this bug!
"""
x, y, w, h = bbox_tlwh
x1 = x
x2 = x + w
y1 = y
y2 = y + h
return x1, y1, x2, y2
def increment_ages(self):
self.tracker.increment_ages()
def _xyxy_to_tlwh(self, bbox_xyxy):
x1, y1, x2, y2 = bbox_xyxy
t = x1
l = y1
w = int(x2 - x1)
h = int(y2 - y1)
return t, l, w, h
def _get_features(self, bbox_xywh, ori_img):
im_crops = []
for box in bbox_xywh:
x1, y1, x2, y2 = self._tlwh_to_xyxy(box)
im = ori_img[y1:y2, x1:x2]
im_crops.append(im)
if im_crops:
features = self.extractor(im_crops)
else:
features = np.array([])
return features
|