File size: 8,854 Bytes
7734d5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import os.path as osp
import cv2
import logging
import argparse
import motmetrics as mm

import torch
#from tracker.multitracker import JDETracker
from tracker.byte_tracker import BYTETracker
from utils import visualization as vis
from utils.log import logger
from utils.timer import Timer
from utils.evaluation import Evaluator
from utils.parse_config import parse_model_cfg
import utils.datasets as datasets
from utils.utils import *


def write_results(filename, results, data_type):
    if data_type == 'mot':
        save_format = '{frame},{id},{x1},{y1},{w},{h},1,-1,-1,-1\n'
    elif data_type == 'kitti':
        save_format = '{frame} {id} pedestrian 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n'
    else:
        raise ValueError(data_type)

    with open(filename, 'w') as f:
        for frame_id, tlwhs, track_ids in results:
            if data_type == 'kitti':
                frame_id -= 1
            for tlwh, track_id in zip(tlwhs, track_ids):
                if track_id < 0:
                    continue
                x1, y1, w, h = tlwh
                x2, y2 = x1 + w, y1 + h
                line = save_format.format(frame=frame_id, id=track_id, x1=x1, y1=y1, x2=x2, y2=y2, w=w, h=h)
                f.write(line)
    logger.info('save results to {}'.format(filename))


def eval_seq(opt, dataloader, data_type, result_filename, save_dir=None, show_image=True, frame_rate=30):
    '''
       Processes the video sequence given and provides the output of tracking result (write the results in video file)

       It uses JDE model for getting information about the online targets present.

       Parameters
       ----------
       opt : Namespace
             Contains information passed as commandline arguments.

       dataloader : LoadVideo
                    Instance of LoadVideo class used for fetching the image sequence and associated data.

       data_type : String
                   Type of dataset corresponding(similar) to the given video.

       result_filename : String
                         The name(path) of the file for storing results.

       save_dir : String
                  Path to the folder for storing the frames containing bounding box information (Result frames).

       show_image : bool
                    Option for shhowing individial frames during run-time.

       frame_rate : int
                    Frame-rate of the given video.

       Returns
       -------
       (Returns are not significant here)
       frame_id : int
                  Sequence number of the last sequence
       '''

    if save_dir:
        mkdir_if_missing(save_dir)
    tracker = BYTETracker(opt, frame_rate=frame_rate)
    timer = Timer()
    results = []
    len_all = len(dataloader)
    start_frame = int(len_all / 2)
    frame_id = int(len_all / 2)
    for i, (path, img, img0) in enumerate(dataloader):
        if i < start_frame:
            continue
        if frame_id % 20 == 0:
            logger.info('Processing frame {} ({:.2f} fps)'.format(frame_id, 1./max(1e-5, timer.average_time)))

        # run tracking
        timer.tic()
        blob = torch.from_numpy(img).cuda().unsqueeze(0)
        online_targets = tracker.update(blob, img0)
        online_tlwhs = []
        online_ids = []
        for t in online_targets:
            tlwh = t.tlwh
            tid = t.track_id
            vertical = tlwh[2] / tlwh[3] > 1.6
            if tlwh[2] * tlwh[3] > opt.min_box_area and not vertical:
                online_tlwhs.append(tlwh)
                online_ids.append(tid)
        timer.toc()
        # save results
        results.append((frame_id + 1, online_tlwhs, online_ids))
        if show_image or save_dir is not None:
            online_im = vis.plot_tracking(img0, online_tlwhs, online_ids, frame_id=frame_id,
                                          fps=1. / timer.average_time)
        if show_image:
            cv2.imshow('online_im', online_im)
        if save_dir is not None:
            cv2.imwrite(os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), online_im)
        frame_id += 1
    # save results
    write_results(result_filename, results, data_type)
    return frame_id, timer.average_time, timer.calls


def main(opt, data_root='/data/MOT16/train', det_root=None, seqs=('MOT16-05',), exp_name='demo', 
         save_images=False, save_videos=False, show_image=True):
    logger.setLevel(logging.INFO)
    result_root = os.path.join(data_root, '..', 'results', exp_name)
    mkdir_if_missing(result_root)
    data_type = 'mot'

    # Read config
    cfg_dict = parse_model_cfg(opt.cfg)
    opt.img_size = [int(cfg_dict[0]['width']), int(cfg_dict[0]['height'])]

    # run tracking
    accs = []
    n_frame = 0
    timer_avgs, timer_calls = [], []
    for seq in seqs:
        output_dir = os.path.join(data_root, '..','outputs', exp_name, seq) if save_images or save_videos else None

        logger.info('start seq: {}'.format(seq))
        dataloader = datasets.LoadImages(osp.join(data_root, seq, 'img1'), opt.img_size)
        result_filename = os.path.join(result_root, '{}.txt'.format(seq))
        meta_info = open(os.path.join(data_root, seq, 'seqinfo.ini')).read() 
        frame_rate = int(meta_info[meta_info.find('frameRate')+10:meta_info.find('\nseqLength')])
        nf, ta, tc = eval_seq(opt, dataloader, data_type, result_filename,
                              save_dir=output_dir, show_image=show_image, frame_rate=frame_rate)
        n_frame += nf
        timer_avgs.append(ta)
        timer_calls.append(tc)

        # eval
        logger.info('Evaluate seq: {}'.format(seq))
        evaluator = Evaluator(data_root, seq, data_type)
        accs.append(evaluator.eval_file(result_filename))
        if save_videos:
            output_video_path = osp.join(output_dir, '{}.mp4'.format(seq))
            cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg -c:v copy {}'.format(output_dir, output_video_path)
            os.system(cmd_str)
    timer_avgs = np.asarray(timer_avgs)
    timer_calls = np.asarray(timer_calls)
    all_time = np.dot(timer_avgs, timer_calls)
    avg_time = all_time / np.sum(timer_calls)
    logger.info('Time elapsed: {:.2f} seconds, FPS: {:.2f}'.format(all_time, 1.0 / avg_time))

    # get summary
    metrics = mm.metrics.motchallenge_metrics
    mh = mm.metrics.create()
    summary = Evaluator.get_summary(accs, seqs, metrics)
    strsummary = mm.io.render_summary(
        summary,
        formatters=mh.formatters,
        namemap=mm.io.motchallenge_metric_names
    )
    print(strsummary)
    Evaluator.save_summary(summary, os.path.join(result_root, 'summary_{}.xlsx'.format(exp_name)))



if __name__ == '__main__':
    parser = argparse.ArgumentParser(prog='track.py')
    parser.add_argument('--cfg', type=str, default='cfg/yolov3_1088x608.cfg', help='cfg file path')
    parser.add_argument('--weights', type=str, default='weights/latest.pt', help='path to weights file')
    parser.add_argument('--iou-thres', type=float, default=0.5, help='iou threshold required to qualify as detected')
    parser.add_argument('--conf-thres', type=float, default=0.7, help='object confidence threshold')
    parser.add_argument('--nms-thres', type=float, default=0.4, help='iou threshold for non-maximum suppression')
    parser.add_argument('--min-box-area', type=float, default=200, help='filter out tiny boxes')
    parser.add_argument('--track-buffer', type=int, default=30, help='tracking buffer')
    parser.add_argument('--test-mot16', action='store_true', help='tracking buffer')
    parser.add_argument('--val-mot17', default=True, help='validation on MOT17')
    parser.add_argument('--save-images', action='store_true', help='save tracking results (image)')
    parser.add_argument('--save-videos', action='store_true', help='save tracking results (video)')
    opt = parser.parse_args()
    print(opt, end='\n\n')
 
    if not opt.test_mot16:
        seqs_str = '''MOT17-02-SDP
                      MOT17-04-SDP
                      MOT17-05-SDP
                      MOT17-09-SDP
                      MOT17-10-SDP
                      MOT17-11-SDP
                      MOT17-13-SDP
                    '''
        #seqs_str = '''MOT17-02-SDP'''
        data_root = '/opt/tiger/demo/datasets/MOT17/images/train'
    else:
        seqs_str = '''MOT16-01
                     MOT16-03
                     MOT16-06
                     MOT16-07
                     MOT16-08
                     MOT16-12
                     MOT16-14'''
        data_root = '/home/wangzd/datasets/MOT/MOT16/images/test'
    seqs = [seq.strip() for seq in seqs_str.split()]

    main(opt,
         data_root=data_root,
         seqs=seqs,
         exp_name=opt.weights.split('/')[-2],
         show_image=False,
         save_images=opt.save_images, 
         save_videos=opt.save_videos)