File size: 11,908 Bytes
7734d5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
#include "layer.h"
#include "net.h"

#if defined(USE_NCNN_SIMPLEOCV)
#include "simpleocv.h"
#include <opencv2/opencv.hpp>
#else
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/opencv.hpp>
#endif
#include <float.h>
#include <stdio.h>
#include <vector>
#include <chrono>
#include "BYTETracker.h"

#define YOLOX_NMS_THRESH  0.7 // nms threshold
#define YOLOX_CONF_THRESH 0.1 // threshold of bounding box prob
#define INPUT_W 1088  // target image size w after resize
#define INPUT_H 608   // target image size h after resize

Mat static_resize(Mat& img) {
    float r = min(INPUT_W / (img.cols*1.0), INPUT_H / (img.rows*1.0));
    // r = std::min(r, 1.0f);
    int unpad_w = r * img.cols;
    int unpad_h = r * img.rows;
    Mat re(unpad_h, unpad_w, CV_8UC3);
    resize(img, re, re.size());
    Mat out(INPUT_H, INPUT_W, CV_8UC3, Scalar(114, 114, 114));
    re.copyTo(out(Rect(0, 0, re.cols, re.rows)));
    return out;
}

// YOLOX use the same focus in yolov5
class YoloV5Focus : public ncnn::Layer
{
public:
    YoloV5Focus()
    {
        one_blob_only = true;
    }

    virtual int forward(const ncnn::Mat& bottom_blob, ncnn::Mat& top_blob, const ncnn::Option& opt) const
    {
        int w = bottom_blob.w;
        int h = bottom_blob.h;
        int channels = bottom_blob.c;

        int outw = w / 2;
        int outh = h / 2;
        int outc = channels * 4;

        top_blob.create(outw, outh, outc, 4u, 1, opt.blob_allocator);
        if (top_blob.empty())
            return -100;

        #pragma omp parallel for num_threads(opt.num_threads)
        for (int p = 0; p < outc; p++)
        {
            const float* ptr = bottom_blob.channel(p % channels).row((p / channels) % 2) + ((p / channels) / 2);
            float* outptr = top_blob.channel(p);

            for (int i = 0; i < outh; i++)
            {
                for (int j = 0; j < outw; j++)
                {
                    *outptr = *ptr;

                    outptr += 1;
                    ptr += 2;
                }

                ptr += w;
            }
        }

        return 0;
    }
};

DEFINE_LAYER_CREATOR(YoloV5Focus)

struct GridAndStride
{
    int grid0;
    int grid1;
    int stride;
};

static inline float intersection_area(const Object& a, const Object& b)
{
    cv::Rect_<float> inter = a.rect & b.rect;
    return inter.area();
}

static void qsort_descent_inplace(std::vector<Object>& faceobjects, int left, int right)
{
    int i = left;
    int j = right;
    float p = faceobjects[(left + right) / 2].prob;

    while (i <= j)
    {
        while (faceobjects[i].prob > p)
            i++;

        while (faceobjects[j].prob < p)
            j--;

        if (i <= j)
        {
            // swap
            std::swap(faceobjects[i], faceobjects[j]);

            i++;
            j--;
        }
    }

    #pragma omp parallel sections
    {
        #pragma omp section
        {
            if (left < j) qsort_descent_inplace(faceobjects, left, j);
        }
        #pragma omp section
        {
            if (i < right) qsort_descent_inplace(faceobjects, i, right);
        }
    }
}

static void qsort_descent_inplace(std::vector<Object>& objects)
{
    if (objects.empty())
        return;

    qsort_descent_inplace(objects, 0, objects.size() - 1);
}

static void nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold)
{
    picked.clear();

    const int n = faceobjects.size();

    std::vector<float> areas(n);
    for (int i = 0; i < n; i++)
    {
        areas[i] = faceobjects[i].rect.area();
    }

    for (int i = 0; i < n; i++)
    {
        const Object& a = faceobjects[i];

        int keep = 1;
        for (int j = 0; j < (int)picked.size(); j++)
        {
            const Object& b = faceobjects[picked[j]];

            // intersection over union
            float inter_area = intersection_area(a, b);
            float union_area = areas[i] + areas[picked[j]] - inter_area;
            // float IoU = inter_area / union_area
            if (inter_area / union_area > nms_threshold)
                keep = 0;
        }

        if (keep)
            picked.push_back(i);
    }
}

static void generate_grids_and_stride(const int target_w, const int target_h, std::vector<int>& strides, std::vector<GridAndStride>& grid_strides)
{
    for (int i = 0; i < (int)strides.size(); i++)
    {
        int stride = strides[i];
        int num_grid_w = target_w / stride;
        int num_grid_h = target_h / stride;
        for (int g1 = 0; g1 < num_grid_h; g1++)
        {
            for (int g0 = 0; g0 < num_grid_w; g0++)
            {
                GridAndStride gs;
                gs.grid0 = g0;
                gs.grid1 = g1;
                gs.stride = stride;
                grid_strides.push_back(gs);
            }
        }
    }
}

static void generate_yolox_proposals(std::vector<GridAndStride> grid_strides, const ncnn::Mat& feat_blob, float prob_threshold, std::vector<Object>& objects)
{
    const int num_grid = feat_blob.h;
    const int num_class = feat_blob.w - 5;
    const int num_anchors = grid_strides.size();

    const float* feat_ptr = feat_blob.channel(0);
    for (int anchor_idx = 0; anchor_idx < num_anchors; anchor_idx++)
    {
        const int grid0 = grid_strides[anchor_idx].grid0;
        const int grid1 = grid_strides[anchor_idx].grid1;
        const int stride = grid_strides[anchor_idx].stride;

        // yolox/models/yolo_head.py decode logic
        //  outputs[..., :2] = (outputs[..., :2] + grids) * strides
        //  outputs[..., 2:4] = torch.exp(outputs[..., 2:4]) * strides
        float x_center = (feat_ptr[0] + grid0) * stride;
        float y_center = (feat_ptr[1] + grid1) * stride;
        float w = exp(feat_ptr[2]) * stride;
        float h = exp(feat_ptr[3]) * stride;
        float x0 = x_center - w * 0.5f;
        float y0 = y_center - h * 0.5f;

        float box_objectness = feat_ptr[4];
        for (int class_idx = 0; class_idx < num_class; class_idx++)
        {
            float box_cls_score = feat_ptr[5 + class_idx];
            float box_prob = box_objectness * box_cls_score;
            if (box_prob > prob_threshold)
            {
                Object obj;
                obj.rect.x = x0;
                obj.rect.y = y0;
                obj.rect.width = w;
                obj.rect.height = h;
                obj.label = class_idx;
                obj.prob = box_prob;

                objects.push_back(obj);
            }

        } // class loop
        feat_ptr += feat_blob.w;

    } // point anchor loop
}

static int detect_yolox(ncnn::Mat& in_pad, std::vector<Object>& objects, ncnn::Extractor ex, float scale)
{

    ex.input("images", in_pad);
    
    std::vector<Object> proposals;

    {
        ncnn::Mat out;
        ex.extract("output", out);

        static const int stride_arr[] = {8, 16, 32}; // might have stride=64 in YOLOX
        std::vector<int> strides(stride_arr, stride_arr + sizeof(stride_arr) / sizeof(stride_arr[0]));
        std::vector<GridAndStride> grid_strides;
        generate_grids_and_stride(INPUT_W, INPUT_H, strides, grid_strides);
        generate_yolox_proposals(grid_strides, out, YOLOX_CONF_THRESH, proposals);
    }
    // sort all proposals by score from highest to lowest
    qsort_descent_inplace(proposals);

    // apply nms with nms_threshold
    std::vector<int> picked;
    nms_sorted_bboxes(proposals, picked, YOLOX_NMS_THRESH);

    int count = picked.size();

    objects.resize(count);
    for (int i = 0; i < count; i++)
    {
        objects[i] = proposals[picked[i]];

        // adjust offset to original unpadded
        float x0 = (objects[i].rect.x) / scale;
        float y0 = (objects[i].rect.y) / scale;
        float x1 = (objects[i].rect.x + objects[i].rect.width) / scale;
        float y1 = (objects[i].rect.y + objects[i].rect.height) / scale;

        // clip
        // x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f);
        // y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f);
        // x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f);
        // y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f);

        objects[i].rect.x = x0;
        objects[i].rect.y = y0;
        objects[i].rect.width = x1 - x0;
        objects[i].rect.height = y1 - y0;
    }

    return 0;
}

int main(int argc, char** argv)
{
    if (argc != 2)
    {
        fprintf(stderr, "Usage: %s [videopath]\n", argv[0]);
        return -1;
    }

    ncnn::Net yolox;

    //yolox.opt.use_vulkan_compute = true;
    //yolox.opt.use_bf16_storage = true;
    yolox.opt.num_threads = 20;
    //ncnn::set_cpu_powersave(0);

    //ncnn::set_omp_dynamic(0);
    //ncnn::set_omp_num_threads(20);

    // Focus in yolov5
    yolox.register_custom_layer("YoloV5Focus", YoloV5Focus_layer_creator);

    yolox.load_param("bytetrack_s_op.param");
    yolox.load_model("bytetrack_s_op.bin");
    
    ncnn::Extractor ex = yolox.create_extractor();

    const char* videopath = argv[1];

    VideoCapture cap(videopath);
	if (!cap.isOpened())
		return 0;

	int img_w = cap.get(CV_CAP_PROP_FRAME_WIDTH);
	int img_h = cap.get(CV_CAP_PROP_FRAME_HEIGHT);
    int fps = cap.get(CV_CAP_PROP_FPS);
    long nFrame = static_cast<long>(cap.get(CV_CAP_PROP_FRAME_COUNT));
    cout << "Total frames: " << nFrame << endl;

    VideoWriter writer("demo.mp4", CV_FOURCC('m', 'p', '4', 'v'), fps, Size(img_w, img_h));

    Mat img;
    BYTETracker tracker(fps, 30);
    int num_frames = 0;
    int total_ms = 1;
	for (;;)
    {
        if(!cap.read(img))
            break;
        num_frames ++;
        if (num_frames % 20 == 0)
        {
            cout << "Processing frame " << num_frames << " (" << num_frames * 1000000 / total_ms << " fps)" << endl;
        }
		if (img.empty())
			break;

        float scale = min(INPUT_W / (img.cols*1.0), INPUT_H / (img.rows*1.0));
        Mat pr_img = static_resize(img);
        ncnn::Mat in_pad = ncnn::Mat::from_pixels_resize(pr_img.data, ncnn::Mat::PIXEL_BGR2RGB, INPUT_W, INPUT_H, INPUT_W, INPUT_H);
    
        // python 0-1 input tensor with rgb_means = (0.485, 0.456, 0.406), std = (0.229, 0.224, 0.225)
        // so for 0-255 input image, rgb_mean should multiply 255 and norm should div by std.
        const float mean_vals[3] = {255.f * 0.485f, 255.f * 0.456, 255.f * 0.406f};
        const float norm_vals[3] = {1 / (255.f * 0.229f), 1 / (255.f * 0.224f), 1 / (255.f * 0.225f)};

        in_pad.substract_mean_normalize(mean_vals, norm_vals);

        std::vector<Object> objects;
        auto start = chrono::system_clock::now();
        //detect_yolox(img, objects);
        detect_yolox(in_pad, objects, ex, scale);
        vector<STrack> output_stracks = tracker.update(objects);
        auto end = chrono::system_clock::now();
        total_ms = total_ms + chrono::duration_cast<chrono::microseconds>(end - start).count();
        for (int i = 0; i < output_stracks.size(); i++)
		{
			vector<float> tlwh = output_stracks[i].tlwh;
			bool vertical = tlwh[2] / tlwh[3] > 1.6;
			if (tlwh[2] * tlwh[3] > 20 && !vertical)
			{
				Scalar s = tracker.get_color(output_stracks[i].track_id);
				putText(img, format("%d", output_stracks[i].track_id), Point(tlwh[0], tlwh[1] - 5), 
                        0, 0.6, Scalar(0, 0, 255), 2, LINE_AA);
                rectangle(img, Rect(tlwh[0], tlwh[1], tlwh[2], tlwh[3]), s, 2);
			}
		}
        putText(img, format("frame: %d fps: %d num: %d", num_frames, num_frames * 1000000 / total_ms, output_stracks.size()), 
                Point(0, 30), 0, 0.6, Scalar(0, 0, 255), 2, LINE_AA);
        writer.write(img);
        char c = waitKey(1);
        if (c > 0)
        {
            break;
        }
    }
    cap.release();
    cout << "FPS: " << num_frames * 1000000 / total_ms << endl;

    return 0;
}