Spaces:
Runtime error
Runtime error
File size: 11,908 Bytes
7734d5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
#include "layer.h"
#include "net.h"
#if defined(USE_NCNN_SIMPLEOCV)
#include "simpleocv.h"
#include <opencv2/opencv.hpp>
#else
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/opencv.hpp>
#endif
#include <float.h>
#include <stdio.h>
#include <vector>
#include <chrono>
#include "BYTETracker.h"
#define YOLOX_NMS_THRESH 0.7 // nms threshold
#define YOLOX_CONF_THRESH 0.1 // threshold of bounding box prob
#define INPUT_W 1088 // target image size w after resize
#define INPUT_H 608 // target image size h after resize
Mat static_resize(Mat& img) {
float r = min(INPUT_W / (img.cols*1.0), INPUT_H / (img.rows*1.0));
// r = std::min(r, 1.0f);
int unpad_w = r * img.cols;
int unpad_h = r * img.rows;
Mat re(unpad_h, unpad_w, CV_8UC3);
resize(img, re, re.size());
Mat out(INPUT_H, INPUT_W, CV_8UC3, Scalar(114, 114, 114));
re.copyTo(out(Rect(0, 0, re.cols, re.rows)));
return out;
}
// YOLOX use the same focus in yolov5
class YoloV5Focus : public ncnn::Layer
{
public:
YoloV5Focus()
{
one_blob_only = true;
}
virtual int forward(const ncnn::Mat& bottom_blob, ncnn::Mat& top_blob, const ncnn::Option& opt) const
{
int w = bottom_blob.w;
int h = bottom_blob.h;
int channels = bottom_blob.c;
int outw = w / 2;
int outh = h / 2;
int outc = channels * 4;
top_blob.create(outw, outh, outc, 4u, 1, opt.blob_allocator);
if (top_blob.empty())
return -100;
#pragma omp parallel for num_threads(opt.num_threads)
for (int p = 0; p < outc; p++)
{
const float* ptr = bottom_blob.channel(p % channels).row((p / channels) % 2) + ((p / channels) / 2);
float* outptr = top_blob.channel(p);
for (int i = 0; i < outh; i++)
{
for (int j = 0; j < outw; j++)
{
*outptr = *ptr;
outptr += 1;
ptr += 2;
}
ptr += w;
}
}
return 0;
}
};
DEFINE_LAYER_CREATOR(YoloV5Focus)
struct GridAndStride
{
int grid0;
int grid1;
int stride;
};
static inline float intersection_area(const Object& a, const Object& b)
{
cv::Rect_<float> inter = a.rect & b.rect;
return inter.area();
}
static void qsort_descent_inplace(std::vector<Object>& faceobjects, int left, int right)
{
int i = left;
int j = right;
float p = faceobjects[(left + right) / 2].prob;
while (i <= j)
{
while (faceobjects[i].prob > p)
i++;
while (faceobjects[j].prob < p)
j--;
if (i <= j)
{
// swap
std::swap(faceobjects[i], faceobjects[j]);
i++;
j--;
}
}
#pragma omp parallel sections
{
#pragma omp section
{
if (left < j) qsort_descent_inplace(faceobjects, left, j);
}
#pragma omp section
{
if (i < right) qsort_descent_inplace(faceobjects, i, right);
}
}
}
static void qsort_descent_inplace(std::vector<Object>& objects)
{
if (objects.empty())
return;
qsort_descent_inplace(objects, 0, objects.size() - 1);
}
static void nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold)
{
picked.clear();
const int n = faceobjects.size();
std::vector<float> areas(n);
for (int i = 0; i < n; i++)
{
areas[i] = faceobjects[i].rect.area();
}
for (int i = 0; i < n; i++)
{
const Object& a = faceobjects[i];
int keep = 1;
for (int j = 0; j < (int)picked.size(); j++)
{
const Object& b = faceobjects[picked[j]];
// intersection over union
float inter_area = intersection_area(a, b);
float union_area = areas[i] + areas[picked[j]] - inter_area;
// float IoU = inter_area / union_area
if (inter_area / union_area > nms_threshold)
keep = 0;
}
if (keep)
picked.push_back(i);
}
}
static void generate_grids_and_stride(const int target_w, const int target_h, std::vector<int>& strides, std::vector<GridAndStride>& grid_strides)
{
for (int i = 0; i < (int)strides.size(); i++)
{
int stride = strides[i];
int num_grid_w = target_w / stride;
int num_grid_h = target_h / stride;
for (int g1 = 0; g1 < num_grid_h; g1++)
{
for (int g0 = 0; g0 < num_grid_w; g0++)
{
GridAndStride gs;
gs.grid0 = g0;
gs.grid1 = g1;
gs.stride = stride;
grid_strides.push_back(gs);
}
}
}
}
static void generate_yolox_proposals(std::vector<GridAndStride> grid_strides, const ncnn::Mat& feat_blob, float prob_threshold, std::vector<Object>& objects)
{
const int num_grid = feat_blob.h;
const int num_class = feat_blob.w - 5;
const int num_anchors = grid_strides.size();
const float* feat_ptr = feat_blob.channel(0);
for (int anchor_idx = 0; anchor_idx < num_anchors; anchor_idx++)
{
const int grid0 = grid_strides[anchor_idx].grid0;
const int grid1 = grid_strides[anchor_idx].grid1;
const int stride = grid_strides[anchor_idx].stride;
// yolox/models/yolo_head.py decode logic
// outputs[..., :2] = (outputs[..., :2] + grids) * strides
// outputs[..., 2:4] = torch.exp(outputs[..., 2:4]) * strides
float x_center = (feat_ptr[0] + grid0) * stride;
float y_center = (feat_ptr[1] + grid1) * stride;
float w = exp(feat_ptr[2]) * stride;
float h = exp(feat_ptr[3]) * stride;
float x0 = x_center - w * 0.5f;
float y0 = y_center - h * 0.5f;
float box_objectness = feat_ptr[4];
for (int class_idx = 0; class_idx < num_class; class_idx++)
{
float box_cls_score = feat_ptr[5 + class_idx];
float box_prob = box_objectness * box_cls_score;
if (box_prob > prob_threshold)
{
Object obj;
obj.rect.x = x0;
obj.rect.y = y0;
obj.rect.width = w;
obj.rect.height = h;
obj.label = class_idx;
obj.prob = box_prob;
objects.push_back(obj);
}
} // class loop
feat_ptr += feat_blob.w;
} // point anchor loop
}
static int detect_yolox(ncnn::Mat& in_pad, std::vector<Object>& objects, ncnn::Extractor ex, float scale)
{
ex.input("images", in_pad);
std::vector<Object> proposals;
{
ncnn::Mat out;
ex.extract("output", out);
static const int stride_arr[] = {8, 16, 32}; // might have stride=64 in YOLOX
std::vector<int> strides(stride_arr, stride_arr + sizeof(stride_arr) / sizeof(stride_arr[0]));
std::vector<GridAndStride> grid_strides;
generate_grids_and_stride(INPUT_W, INPUT_H, strides, grid_strides);
generate_yolox_proposals(grid_strides, out, YOLOX_CONF_THRESH, proposals);
}
// sort all proposals by score from highest to lowest
qsort_descent_inplace(proposals);
// apply nms with nms_threshold
std::vector<int> picked;
nms_sorted_bboxes(proposals, picked, YOLOX_NMS_THRESH);
int count = picked.size();
objects.resize(count);
for (int i = 0; i < count; i++)
{
objects[i] = proposals[picked[i]];
// adjust offset to original unpadded
float x0 = (objects[i].rect.x) / scale;
float y0 = (objects[i].rect.y) / scale;
float x1 = (objects[i].rect.x + objects[i].rect.width) / scale;
float y1 = (objects[i].rect.y + objects[i].rect.height) / scale;
// clip
// x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f);
// y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f);
// x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f);
// y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f);
objects[i].rect.x = x0;
objects[i].rect.y = y0;
objects[i].rect.width = x1 - x0;
objects[i].rect.height = y1 - y0;
}
return 0;
}
int main(int argc, char** argv)
{
if (argc != 2)
{
fprintf(stderr, "Usage: %s [videopath]\n", argv[0]);
return -1;
}
ncnn::Net yolox;
//yolox.opt.use_vulkan_compute = true;
//yolox.opt.use_bf16_storage = true;
yolox.opt.num_threads = 20;
//ncnn::set_cpu_powersave(0);
//ncnn::set_omp_dynamic(0);
//ncnn::set_omp_num_threads(20);
// Focus in yolov5
yolox.register_custom_layer("YoloV5Focus", YoloV5Focus_layer_creator);
yolox.load_param("bytetrack_s_op.param");
yolox.load_model("bytetrack_s_op.bin");
ncnn::Extractor ex = yolox.create_extractor();
const char* videopath = argv[1];
VideoCapture cap(videopath);
if (!cap.isOpened())
return 0;
int img_w = cap.get(CV_CAP_PROP_FRAME_WIDTH);
int img_h = cap.get(CV_CAP_PROP_FRAME_HEIGHT);
int fps = cap.get(CV_CAP_PROP_FPS);
long nFrame = static_cast<long>(cap.get(CV_CAP_PROP_FRAME_COUNT));
cout << "Total frames: " << nFrame << endl;
VideoWriter writer("demo.mp4", CV_FOURCC('m', 'p', '4', 'v'), fps, Size(img_w, img_h));
Mat img;
BYTETracker tracker(fps, 30);
int num_frames = 0;
int total_ms = 1;
for (;;)
{
if(!cap.read(img))
break;
num_frames ++;
if (num_frames % 20 == 0)
{
cout << "Processing frame " << num_frames << " (" << num_frames * 1000000 / total_ms << " fps)" << endl;
}
if (img.empty())
break;
float scale = min(INPUT_W / (img.cols*1.0), INPUT_H / (img.rows*1.0));
Mat pr_img = static_resize(img);
ncnn::Mat in_pad = ncnn::Mat::from_pixels_resize(pr_img.data, ncnn::Mat::PIXEL_BGR2RGB, INPUT_W, INPUT_H, INPUT_W, INPUT_H);
// python 0-1 input tensor with rgb_means = (0.485, 0.456, 0.406), std = (0.229, 0.224, 0.225)
// so for 0-255 input image, rgb_mean should multiply 255 and norm should div by std.
const float mean_vals[3] = {255.f * 0.485f, 255.f * 0.456, 255.f * 0.406f};
const float norm_vals[3] = {1 / (255.f * 0.229f), 1 / (255.f * 0.224f), 1 / (255.f * 0.225f)};
in_pad.substract_mean_normalize(mean_vals, norm_vals);
std::vector<Object> objects;
auto start = chrono::system_clock::now();
//detect_yolox(img, objects);
detect_yolox(in_pad, objects, ex, scale);
vector<STrack> output_stracks = tracker.update(objects);
auto end = chrono::system_clock::now();
total_ms = total_ms + chrono::duration_cast<chrono::microseconds>(end - start).count();
for (int i = 0; i < output_stracks.size(); i++)
{
vector<float> tlwh = output_stracks[i].tlwh;
bool vertical = tlwh[2] / tlwh[3] > 1.6;
if (tlwh[2] * tlwh[3] > 20 && !vertical)
{
Scalar s = tracker.get_color(output_stracks[i].track_id);
putText(img, format("%d", output_stracks[i].track_id), Point(tlwh[0], tlwh[1] - 5),
0, 0.6, Scalar(0, 0, 255), 2, LINE_AA);
rectangle(img, Rect(tlwh[0], tlwh[1], tlwh[2], tlwh[3]), s, 2);
}
}
putText(img, format("frame: %d fps: %d num: %d", num_frames, num_frames * 1000000 / total_ms, output_stracks.size()),
Point(0, 30), 0, 0.6, Scalar(0, 0, 255), 2, LINE_AA);
writer.write(img);
char c = waitKey(1);
if (c > 0)
{
break;
}
}
cap.release();
cout << "FPS: " << num_frames * 1000000 / total_ms << endl;
return 0;
}
|