Spaces:
Runtime error
Runtime error
File size: 13,359 Bytes
7734d5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import numpy as np
#from numba import jit
from collections import OrderedDict, deque
import itertools
import os
import cv2
import torch
from torch._C import dtype
import torchvision
from yolox.motdt_tracker import matching
from .kalman_filter import KalmanFilter
from .reid_model import load_reid_model, extract_reid_features
from yolox.data.dataloading import get_yolox_datadir
from .basetrack import BaseTrack, TrackState
class STrack(BaseTrack):
def __init__(self, tlwh, score, max_n_features=100, from_det=True):
# wait activate
self._tlwh = np.asarray(tlwh, dtype=np.float)
self.kalman_filter = None
self.mean, self.covariance = None, None
self.is_activated = False
self.score = score
self.max_n_features = max_n_features
self.curr_feature = None
self.last_feature = None
self.features = deque([], maxlen=self.max_n_features)
# classification
self.from_det = from_det
self.tracklet_len = 0
self.time_by_tracking = 0
# self-tracking
self.tracker = None
def set_feature(self, feature):
if feature is None:
return False
self.features.append(feature)
self.curr_feature = feature
self.last_feature = feature
# self._p_feature = 0
return True
def predict(self):
if self.time_since_update > 0:
self.tracklet_len = 0
self.time_since_update += 1
mean_state = self.mean.copy()
if self.state != TrackState.Tracked:
mean_state[7] = 0
self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)
if self.tracker:
self.tracker.update_roi(self.tlwh)
def self_tracking(self, image):
tlwh = self.tracker.predict(image) if self.tracker else self.tlwh
return tlwh
def activate(self, kalman_filter, frame_id, image):
"""Start a new tracklet"""
self.kalman_filter = kalman_filter # type: KalmanFilter
self.track_id = self.next_id()
# cx, cy, aspect_ratio, height, dx, dy, da, dh
self.mean, self.covariance = self.kalman_filter.initiate(self.tlwh_to_xyah(self._tlwh))
# self.tracker = sot.SingleObjectTracker()
# self.tracker.init(image, self.tlwh)
del self._tlwh
self.time_since_update = 0
self.time_by_tracking = 0
self.tracklet_len = 0
self.state = TrackState.Tracked
# self.is_activated = True
self.frame_id = frame_id
self.start_frame = frame_id
def re_activate(self, new_track, frame_id, image, new_id=False):
# self.mean, self.covariance = self.kalman_filter.initiate(self.tlwh_to_xyah(new_track.tlwh))
self.mean, self.covariance = self.kalman_filter.update(
self.mean, self.covariance, self.tlwh_to_xyah(new_track.tlwh)
)
self.time_since_update = 0
self.time_by_tracking = 0
self.tracklet_len = 0
self.state = TrackState.Tracked
self.is_activated = True
self.frame_id = frame_id
if new_id:
self.track_id = self.next_id()
self.set_feature(new_track.curr_feature)
def update(self, new_track, frame_id, image, update_feature=True):
"""
Update a matched track
:type new_track: STrack
:type frame_id: int
:type update_feature: bool
:return:
"""
self.frame_id = frame_id
self.time_since_update = 0
if new_track.from_det:
self.time_by_tracking = 0
else:
self.time_by_tracking += 1
self.tracklet_len += 1
new_tlwh = new_track.tlwh
self.mean, self.covariance = self.kalman_filter.update(
self.mean, self.covariance, self.tlwh_to_xyah(new_tlwh))
self.state = TrackState.Tracked
self.is_activated = True
self.score = new_track.score
if update_feature:
self.set_feature(new_track.curr_feature)
if self.tracker:
self.tracker.update(image, self.tlwh)
@property
#@jit
def tlwh(self):
"""Get current position in bounding box format `(top left x, top left y,
width, height)`.
"""
if self.mean is None:
return self._tlwh.copy()
ret = self.mean[:4].copy()
ret[2] *= ret[3]
ret[:2] -= ret[2:] / 2
return ret
@property
#@jit
def tlbr(self):
"""Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
`(top left, bottom right)`.
"""
ret = self.tlwh.copy()
ret[2:] += ret[:2]
return ret
@staticmethod
#@jit
def tlwh_to_xyah(tlwh):
"""Convert bounding box to format `(center x, center y, aspect ratio,
height)`, where the aspect ratio is `width / height`.
"""
ret = np.asarray(tlwh).copy()
ret[:2] += ret[2:] / 2
ret[2] /= ret[3]
return ret
def to_xyah(self):
return self.tlwh_to_xyah(self.tlwh)
def tracklet_score(self):
# score = (1 - np.exp(-0.6 * self.hit_streak)) * np.exp(-0.03 * self.time_by_tracking)
score = max(0, 1 - np.log(1 + 0.05 * self.time_by_tracking)) * (self.tracklet_len - self.time_by_tracking > 2)
# score = max(0, 1 - np.log(1 + 0.05 * self.n_tracking)) * (1 - np.exp(-0.6 * self.hit_streak))
return score
def __repr__(self):
return 'OT_{}_({}-{})'.format(self.track_id, self.start_frame, self.end_frame)
class OnlineTracker(object):
def __init__(self, model_folder, min_cls_score=0.4, min_ap_dist=0.8, max_time_lost=30, use_tracking=True, use_refind=True):
self.min_cls_score = min_cls_score
self.min_ap_dist = min_ap_dist
self.max_time_lost = max_time_lost
self.kalman_filter = KalmanFilter()
self.tracked_stracks = [] # type: list[STrack]
self.lost_stracks = [] # type: list[STrack]
self.removed_stracks = [] # type: list[STrack]
self.use_refind = use_refind
self.use_tracking = use_tracking
self.classifier = None
self.reid_model = load_reid_model(model_folder)
self.frame_id = 0
def update(self, output_results, img_info, img_size, img_file_name):
img_file_name = os.path.join(get_yolox_datadir(), 'mot', 'train', img_file_name)
image = cv2.imread(img_file_name)
# post process detections
output_results = output_results.cpu().numpy()
confidences = output_results[:, 4] * output_results[:, 5]
bboxes = output_results[:, :4] # x1y1x2y2
img_h, img_w = img_info[0], img_info[1]
scale = min(img_size[0] / float(img_h), img_size[1] / float(img_w))
bboxes /= scale
bbox_xyxy = bboxes
tlwhs = self._xyxy_to_tlwh_array(bbox_xyxy)
remain_inds = confidences > self.min_cls_score
tlwhs = tlwhs[remain_inds]
det_scores = confidences[remain_inds]
self.frame_id += 1
activated_starcks = []
refind_stracks = []
lost_stracks = []
removed_stracks = []
"""step 1: prediction"""
for strack in itertools.chain(self.tracked_stracks, self.lost_stracks):
strack.predict()
"""step 2: scoring and selection"""
if det_scores is None:
det_scores = np.ones(len(tlwhs), dtype=float)
detections = [STrack(tlwh, score, from_det=True) for tlwh, score in zip(tlwhs, det_scores)]
if self.use_tracking:
tracks = [STrack(t.self_tracking(image), t.score * t.tracklet_score(), from_det=False)
for t in itertools.chain(self.tracked_stracks, self.lost_stracks) if t.is_activated]
detections.extend(tracks)
rois = np.asarray([d.tlbr for d in detections], dtype=np.float32)
scores = np.asarray([d.score for d in detections], dtype=np.float32)
# nms
if len(detections) > 0:
nms_out_index = torchvision.ops.batched_nms(
torch.from_numpy(rois),
torch.from_numpy(scores.reshape(-1)).to(torch.from_numpy(rois).dtype),
torch.zeros_like(torch.from_numpy(scores.reshape(-1))),
0.7,
)
keep = nms_out_index.numpy()
mask = np.zeros(len(rois), dtype=np.bool)
mask[keep] = True
keep = np.where(mask & (scores >= self.min_cls_score))[0]
detections = [detections[i] for i in keep]
scores = scores[keep]
for d, score in zip(detections, scores):
d.score = score
pred_dets = [d for d in detections if not d.from_det]
detections = [d for d in detections if d.from_det]
# set features
tlbrs = [det.tlbr for det in detections]
features = extract_reid_features(self.reid_model, image, tlbrs)
features = features.cpu().numpy()
for i, det in enumerate(detections):
det.set_feature(features[i])
"""step 3: association for tracked"""
# matching for tracked targets
unconfirmed = []
tracked_stracks = [] # type: list[STrack]
for track in self.tracked_stracks:
if not track.is_activated:
unconfirmed.append(track)
else:
tracked_stracks.append(track)
dists = matching.nearest_reid_distance(tracked_stracks, detections, metric='euclidean')
dists = matching.gate_cost_matrix(self.kalman_filter, dists, tracked_stracks, detections)
matches, u_track, u_detection = matching.linear_assignment(dists, thresh=self.min_ap_dist)
for itracked, idet in matches:
tracked_stracks[itracked].update(detections[idet], self.frame_id, image)
# matching for missing targets
detections = [detections[i] for i in u_detection]
dists = matching.nearest_reid_distance(self.lost_stracks, detections, metric='euclidean')
dists = matching.gate_cost_matrix(self.kalman_filter, dists, self.lost_stracks, detections)
matches, u_lost, u_detection = matching.linear_assignment(dists, thresh=self.min_ap_dist)
for ilost, idet in matches:
track = self.lost_stracks[ilost] # type: STrack
det = detections[idet]
track.re_activate(det, self.frame_id, image, new_id=not self.use_refind)
refind_stracks.append(track)
# remaining tracked
# tracked
len_det = len(u_detection)
detections = [detections[i] for i in u_detection] + pred_dets
r_tracked_stracks = [tracked_stracks[i] for i in u_track]
dists = matching.iou_distance(r_tracked_stracks, detections)
matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.5)
for itracked, idet in matches:
r_tracked_stracks[itracked].update(detections[idet], self.frame_id, image, update_feature=True)
for it in u_track:
track = r_tracked_stracks[it]
track.mark_lost()
lost_stracks.append(track)
# unconfirmed
detections = [detections[i] for i in u_detection if i < len_det]
dists = matching.iou_distance(unconfirmed, detections)
matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7)
for itracked, idet in matches:
unconfirmed[itracked].update(detections[idet], self.frame_id, image, update_feature=True)
for it in u_unconfirmed:
track = unconfirmed[it]
track.mark_removed()
removed_stracks.append(track)
"""step 4: init new stracks"""
for inew in u_detection:
track = detections[inew]
if not track.from_det or track.score < 0.6:
continue
track.activate(self.kalman_filter, self.frame_id, image)
activated_starcks.append(track)
"""step 6: update state"""
for track in self.lost_stracks:
if self.frame_id - track.end_frame > self.max_time_lost:
track.mark_removed()
removed_stracks.append(track)
self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked]
self.lost_stracks = [t for t in self.lost_stracks if t.state == TrackState.Lost] # type: list[STrack]
self.tracked_stracks.extend(activated_starcks)
self.tracked_stracks.extend(refind_stracks)
self.lost_stracks.extend(lost_stracks)
self.removed_stracks.extend(removed_stracks)
# output_stracks = self.tracked_stracks + self.lost_stracks
# get scores of lost tracks
output_tracked_stracks = [track for track in self.tracked_stracks if track.is_activated]
output_stracks = output_tracked_stracks
return output_stracks
@staticmethod
def _xyxy_to_tlwh_array(bbox_xyxy):
if isinstance(bbox_xyxy, np.ndarray):
bbox_tlwh = bbox_xyxy.copy()
elif isinstance(bbox_xyxy, torch.Tensor):
bbox_tlwh = bbox_xyxy.clone()
bbox_tlwh[:, 2] = bbox_xyxy[:, 2] - bbox_xyxy[:, 0]
bbox_tlwh[:, 3] = bbox_xyxy[:, 3] - bbox_xyxy[:, 1]
return bbox_tlwh
|