File size: 13,359 Bytes
7734d5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import numpy as np
#from numba import jit
from collections import OrderedDict, deque
import itertools
import os
import cv2
import torch
from torch._C import dtype
import torchvision

from yolox.motdt_tracker import matching
from .kalman_filter import KalmanFilter
from .reid_model import load_reid_model, extract_reid_features
from yolox.data.dataloading import get_yolox_datadir

from .basetrack import BaseTrack, TrackState


class STrack(BaseTrack):

    def __init__(self, tlwh, score, max_n_features=100, from_det=True):

        # wait activate
        self._tlwh = np.asarray(tlwh, dtype=np.float)
        self.kalman_filter = None
        self.mean, self.covariance = None, None
        self.is_activated = False

        self.score = score
        self.max_n_features = max_n_features
        self.curr_feature = None
        self.last_feature = None
        self.features = deque([], maxlen=self.max_n_features)

        # classification
        self.from_det = from_det
        self.tracklet_len = 0
        self.time_by_tracking = 0

        # self-tracking
        self.tracker = None

    def set_feature(self, feature):
        if feature is None:
            return False
        self.features.append(feature)
        self.curr_feature = feature
        self.last_feature = feature
        # self._p_feature = 0
        return True

    def predict(self):
        if self.time_since_update > 0:
            self.tracklet_len = 0

        self.time_since_update += 1

        mean_state = self.mean.copy()
        if self.state != TrackState.Tracked:
            mean_state[7] = 0
        self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)

        if self.tracker:
            self.tracker.update_roi(self.tlwh)

    def self_tracking(self, image):
        tlwh = self.tracker.predict(image) if self.tracker else self.tlwh
        return tlwh

    def activate(self, kalman_filter, frame_id, image):
        """Start a new tracklet"""
        self.kalman_filter = kalman_filter  # type: KalmanFilter
        self.track_id = self.next_id()
        # cx, cy, aspect_ratio, height, dx, dy, da, dh
        self.mean, self.covariance = self.kalman_filter.initiate(self.tlwh_to_xyah(self._tlwh))

        # self.tracker = sot.SingleObjectTracker()
        # self.tracker.init(image, self.tlwh)

        del self._tlwh

        self.time_since_update = 0
        self.time_by_tracking = 0
        self.tracklet_len = 0
        self.state = TrackState.Tracked
        # self.is_activated = True
        self.frame_id = frame_id
        self.start_frame = frame_id

    def re_activate(self, new_track, frame_id, image, new_id=False):
        # self.mean, self.covariance = self.kalman_filter.initiate(self.tlwh_to_xyah(new_track.tlwh))
        self.mean, self.covariance = self.kalman_filter.update(
            self.mean, self.covariance, self.tlwh_to_xyah(new_track.tlwh)
        )
        self.time_since_update = 0
        self.time_by_tracking = 0
        self.tracklet_len = 0
        self.state = TrackState.Tracked
        self.is_activated = True
        self.frame_id = frame_id
        if new_id:
            self.track_id = self.next_id()

        self.set_feature(new_track.curr_feature)

    def update(self, new_track, frame_id, image, update_feature=True):
        """
        Update a matched track
        :type new_track: STrack
        :type frame_id: int
        :type update_feature: bool
        :return:
        """
        self.frame_id = frame_id
        self.time_since_update = 0
        if new_track.from_det:
            self.time_by_tracking = 0
        else:
            self.time_by_tracking += 1
        self.tracklet_len += 1

        new_tlwh = new_track.tlwh
        self.mean, self.covariance = self.kalman_filter.update(
            self.mean, self.covariance, self.tlwh_to_xyah(new_tlwh))
        self.state = TrackState.Tracked
        self.is_activated = True

        self.score = new_track.score

        if update_feature:
            self.set_feature(new_track.curr_feature)
            if self.tracker:
                self.tracker.update(image, self.tlwh)

    @property
    #@jit
    def tlwh(self):
        """Get current position in bounding box format `(top left x, top left y,
                width, height)`.
        """
        if self.mean is None:
            return self._tlwh.copy()
        ret = self.mean[:4].copy()
        ret[2] *= ret[3]
        ret[:2] -= ret[2:] / 2
        return ret

    @property
    #@jit
    def tlbr(self):
        """Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
        `(top left, bottom right)`.
        """
        ret = self.tlwh.copy()
        ret[2:] += ret[:2]
        return ret

    @staticmethod
    #@jit
    def tlwh_to_xyah(tlwh):
        """Convert bounding box to format `(center x, center y, aspect ratio,
        height)`, where the aspect ratio is `width / height`.
        """
        ret = np.asarray(tlwh).copy()
        ret[:2] += ret[2:] / 2
        ret[2] /= ret[3]
        return ret

    def to_xyah(self):
        return self.tlwh_to_xyah(self.tlwh)

    def tracklet_score(self):
        # score = (1 - np.exp(-0.6 * self.hit_streak)) * np.exp(-0.03 * self.time_by_tracking)

        score = max(0, 1 - np.log(1 + 0.05 * self.time_by_tracking)) * (self.tracklet_len - self.time_by_tracking > 2)
        # score = max(0, 1 - np.log(1 + 0.05 * self.n_tracking)) * (1 - np.exp(-0.6 * self.hit_streak))
        return score

    def __repr__(self):
        return 'OT_{}_({}-{})'.format(self.track_id, self.start_frame, self.end_frame)


class OnlineTracker(object):

    def __init__(self, model_folder, min_cls_score=0.4, min_ap_dist=0.8, max_time_lost=30, use_tracking=True, use_refind=True):

        self.min_cls_score = min_cls_score
        self.min_ap_dist = min_ap_dist
        self.max_time_lost = max_time_lost

        self.kalman_filter = KalmanFilter()

        self.tracked_stracks = []   # type: list[STrack]
        self.lost_stracks = []      # type: list[STrack]
        self.removed_stracks = []   # type: list[STrack]

        self.use_refind = use_refind
        self.use_tracking = use_tracking
        self.classifier = None
        self.reid_model = load_reid_model(model_folder)

        self.frame_id = 0

    def update(self, output_results, img_info, img_size, img_file_name):
        img_file_name = os.path.join(get_yolox_datadir(), 'mot', 'train', img_file_name)
        image = cv2.imread(img_file_name)
        # post process detections
        output_results = output_results.cpu().numpy()
        confidences = output_results[:, 4] * output_results[:, 5]
        
        bboxes = output_results[:, :4]  # x1y1x2y2
        img_h, img_w = img_info[0], img_info[1]
        scale = min(img_size[0] / float(img_h), img_size[1] / float(img_w))
        bboxes /= scale
        bbox_xyxy = bboxes
        tlwhs = self._xyxy_to_tlwh_array(bbox_xyxy)
        remain_inds = confidences > self.min_cls_score
        tlwhs = tlwhs[remain_inds]
        det_scores = confidences[remain_inds]

        self.frame_id += 1

        activated_starcks = []
        refind_stracks = []
        lost_stracks = []
        removed_stracks = []

        """step 1: prediction"""
        for strack in itertools.chain(self.tracked_stracks, self.lost_stracks):
            strack.predict()

        """step 2: scoring and selection"""
        if det_scores is None:
            det_scores = np.ones(len(tlwhs), dtype=float)
        detections = [STrack(tlwh, score, from_det=True) for tlwh, score in zip(tlwhs, det_scores)]
        if self.use_tracking:
            tracks = [STrack(t.self_tracking(image), t.score * t.tracklet_score(), from_det=False)
                        for t in itertools.chain(self.tracked_stracks, self.lost_stracks) if t.is_activated]
            detections.extend(tracks)
        rois = np.asarray([d.tlbr for d in detections], dtype=np.float32)
        scores = np.asarray([d.score for d in detections], dtype=np.float32)
        # nms
        if len(detections) > 0:
            nms_out_index = torchvision.ops.batched_nms(
            torch.from_numpy(rois),
            torch.from_numpy(scores.reshape(-1)).to(torch.from_numpy(rois).dtype),
            torch.zeros_like(torch.from_numpy(scores.reshape(-1))),
            0.7,
            )
            keep = nms_out_index.numpy()
            mask = np.zeros(len(rois), dtype=np.bool)
            mask[keep] = True
            keep = np.where(mask & (scores >= self.min_cls_score))[0]
            detections = [detections[i] for i in keep]
            scores = scores[keep]
            for d, score in zip(detections, scores):
                d.score = score
        pred_dets = [d for d in detections if not d.from_det]
        detections = [d for d in detections if d.from_det]

        # set features
        tlbrs = [det.tlbr for det in detections]
        features = extract_reid_features(self.reid_model, image, tlbrs)
        features = features.cpu().numpy()
        for i, det in enumerate(detections):
            det.set_feature(features[i])

        """step 3: association for tracked"""
        # matching for tracked targets
        unconfirmed = []
        tracked_stracks = []  # type: list[STrack]
        for track in self.tracked_stracks:
            if not track.is_activated:
                unconfirmed.append(track)
            else:
                tracked_stracks.append(track)

        dists = matching.nearest_reid_distance(tracked_stracks, detections, metric='euclidean')
        dists = matching.gate_cost_matrix(self.kalman_filter, dists, tracked_stracks, detections)
        matches, u_track, u_detection = matching.linear_assignment(dists, thresh=self.min_ap_dist)
        for itracked, idet in matches:
            tracked_stracks[itracked].update(detections[idet], self.frame_id, image)

        # matching for missing targets
        detections = [detections[i] for i in u_detection]
        dists = matching.nearest_reid_distance(self.lost_stracks, detections, metric='euclidean')
        dists = matching.gate_cost_matrix(self.kalman_filter, dists, self.lost_stracks, detections)
        matches, u_lost, u_detection = matching.linear_assignment(dists, thresh=self.min_ap_dist)
        for ilost, idet in matches:
            track = self.lost_stracks[ilost]  # type: STrack
            det = detections[idet]
            track.re_activate(det, self.frame_id, image, new_id=not self.use_refind)
            refind_stracks.append(track)

        # remaining tracked
        # tracked
        len_det = len(u_detection)
        detections = [detections[i] for i in u_detection] + pred_dets
        r_tracked_stracks = [tracked_stracks[i] for i in u_track]
        dists = matching.iou_distance(r_tracked_stracks, detections)
        matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.5)
        for itracked, idet in matches:
            r_tracked_stracks[itracked].update(detections[idet], self.frame_id, image, update_feature=True)
        for it in u_track:
            track = r_tracked_stracks[it]
            track.mark_lost()
            lost_stracks.append(track)

        # unconfirmed
        detections = [detections[i] for i in u_detection if i < len_det]
        dists = matching.iou_distance(unconfirmed, detections)
        matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7)
        for itracked, idet in matches:
            unconfirmed[itracked].update(detections[idet], self.frame_id, image, update_feature=True)
        for it in u_unconfirmed:
            track = unconfirmed[it]
            track.mark_removed()
            removed_stracks.append(track)

        """step 4: init new stracks"""
        for inew in u_detection:
            track = detections[inew]
            if not track.from_det or track.score < 0.6:
                continue
            track.activate(self.kalman_filter, self.frame_id, image)
            activated_starcks.append(track)

        """step 6: update state"""
        for track in self.lost_stracks:
            if self.frame_id - track.end_frame > self.max_time_lost:
                track.mark_removed()
                removed_stracks.append(track)

        self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked]
        self.lost_stracks = [t for t in self.lost_stracks if t.state == TrackState.Lost]  # type: list[STrack]
        self.tracked_stracks.extend(activated_starcks)
        self.tracked_stracks.extend(refind_stracks)
        self.lost_stracks.extend(lost_stracks)
        self.removed_stracks.extend(removed_stracks)

        # output_stracks = self.tracked_stracks + self.lost_stracks

        # get scores of lost tracks
        output_tracked_stracks = [track for track in self.tracked_stracks if track.is_activated]

        output_stracks = output_tracked_stracks

        return output_stracks
    
    @staticmethod
    def _xyxy_to_tlwh_array(bbox_xyxy):
        if isinstance(bbox_xyxy, np.ndarray):
            bbox_tlwh = bbox_xyxy.copy()
        elif isinstance(bbox_xyxy, torch.Tensor):
            bbox_tlwh = bbox_xyxy.clone()
        bbox_tlwh[:, 2] = bbox_xyxy[:, 2] - bbox_xyxy[:, 0]
        bbox_tlwh[:, 3] = bbox_xyxy[:, 3] - bbox_xyxy[:, 1]
        return bbox_tlwh