File size: 19,250 Bytes
7734d5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
# ------------------------------------------------------------------------
# Copyright (c) 2021 megvii-model. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR)
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------

"""
    SORT: A Simple, Online and Realtime Tracker
    Copyright (C) 2016-2020 Alex Bewley alex@bewley.ai
    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.
    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
"""
from __future__ import print_function

import os
import numpy as np
import random
import argparse
import torchvision.transforms.functional as F
import torch
import cv2
from tqdm import tqdm
from pathlib import Path
from PIL import Image, ImageDraw
from models import build_model
from util.tool import load_model
from main import get_args_parser
from torch.nn.functional import interpolate
from typing import List
from util.evaluation import Evaluator
import motmetrics as mm
import shutil

from detectron2.structures import Instances

from tracker import BYTETracker

np.random.seed(2020)

COLORS_10 = [(144, 238, 144), (178, 34, 34), (221, 160, 221), (0, 255, 0), (0, 128, 0), (210, 105, 30), (220, 20, 60),
             (192, 192, 192), (255, 228, 196), (50, 205, 50), (139, 0, 139), (100, 149, 237), (138, 43, 226),
             (238, 130, 238),
             (255, 0, 255), (0, 100, 0), (127, 255, 0), (255, 0, 255), (0, 0, 205), (255, 140, 0), (255, 239, 213),
             (199, 21, 133), (124, 252, 0), (147, 112, 219), (106, 90, 205), (176, 196, 222), (65, 105, 225),
             (173, 255, 47),
             (255, 20, 147), (219, 112, 147), (186, 85, 211), (199, 21, 133), (148, 0, 211), (255, 99, 71),
             (144, 238, 144),
             (255, 255, 0), (230, 230, 250), (0, 0, 255), (128, 128, 0), (189, 183, 107), (255, 255, 224),
             (128, 128, 128),
             (105, 105, 105), (64, 224, 208), (205, 133, 63), (0, 128, 128), (72, 209, 204), (139, 69, 19),
             (255, 245, 238),
             (250, 240, 230), (152, 251, 152), (0, 255, 255), (135, 206, 235), (0, 191, 255), (176, 224, 230),
             (0, 250, 154),
             (245, 255, 250), (240, 230, 140), (245, 222, 179), (0, 139, 139), (143, 188, 143), (255, 0, 0),
             (240, 128, 128),
             (102, 205, 170), (60, 179, 113), (46, 139, 87), (165, 42, 42), (178, 34, 34), (175, 238, 238),
             (255, 248, 220),
             (218, 165, 32), (255, 250, 240), (253, 245, 230), (244, 164, 96), (210, 105, 30)]


def plot_one_box(x, img, color=None, label=None, score=None, line_thickness=None):
    # Plots one bounding box on image img

    tl = line_thickness or round(
        0.002 * max(img.shape[0:2])) + 1  # line thickness
    color = color or [random.randint(0, 255) for _ in range(3)]
    c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
    cv2.rectangle(img, c1, c2, color, thickness=tl)
    # if label:
    #     tf = max(tl - 1, 1)  # font thickness
    #     t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
    #     c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
    #     cv2.rectangle(img, c1, c2, color, -1)  # filled
    #     cv2.putText(img,
    #                 label, (c1[0], c1[1] - 2),
    #                 0,
    #                 tl / 3, [225, 255, 255],
    #                 thickness=tf,
    #                 lineType=cv2.LINE_AA)
    #     if score is not None:
    #         cv2.putText(img, score, (c1[0], c1[1] + 30), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
    return img


def draw_bboxes(ori_img, bbox, identities=None, offset=(0, 0), cvt_color=False):
    if cvt_color:
        ori_img = cv2.cvtColor(np.asarray(ori_img), cv2.COLOR_RGB2BGR)
    img = ori_img
    for i, box in enumerate(bbox):
        x1, y1, x2, y2 = [int(i) for i in box[:4]]
        x1 += offset[0]
        x2 += offset[0]
        y1 += offset[1]
        y2 += offset[1]
        if len(box) > 4:
            score = '{:.2f}'.format(box[4])
        else:
            score = None
        # box text and bar
        id = int(identities[i]) if identities is not None else 0
        color = COLORS_10[id % len(COLORS_10)]
        label = '{:d}'.format(id)
        # t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 2 , 2)[0]
        img = plot_one_box([x1, y1, x2, y2], img, color, label, score=score)
    return img


def draw_points(img: np.ndarray, points: np.ndarray, color=(255, 255, 255)) -> np.ndarray:
    assert len(points.shape) == 2 and points.shape[1] == 2, 'invalid points shape: {}'.format(points.shape)
    for i, (x, y) in enumerate(points):
        if i >= 300:
            color = (0, 255, 0)
        cv2.circle(img, (int(x), int(y)), 2, color=color, thickness=2)
    return img


def tensor_to_numpy(tensor: torch.Tensor) -> np.ndarray:
    return tensor.detach().cpu().numpy()


class Track(object):
    track_cnt = 0

    def __init__(self, box):
        self.box = box
        self.time_since_update = 0
        self.id = Track.track_cnt
        Track.track_cnt += 1
        self.miss = 0

    def miss_one_frame(self):
        self.miss += 1

    def clear_miss(self):
        self.miss = 0

    def update(self, box):
        self.box = box
        self.clear_miss()

        
def write_results(filename, results):
    save_format = '{frame},{id},{x1},{y1},{w},{h},{s},-1,-1,-1\n'
    with open(filename, 'w') as f:
        for frame_id, tlwhs, track_ids, scores in results:
            for tlwh, track_id, score in zip(tlwhs, track_ids, scores):
                if track_id < 0:
                    continue
                x1, y1, w, h = tlwh
                line = save_format.format(frame=frame_id, id=track_id, x1=round(x1, 1), y1=round(y1, 1), w=round(w, 1), h=round(h, 1), s=round(score, 2))
                f.write(line)
    logger.info('save results to {}'.format(filename))


class MOTR(object):
    def __init__(self, max_age=1, min_hits=3, iou_threshold=0.3):
        self.tracker = BYTETracker()

    def update(self, dt_instances: Instances):
        ret = []
        for i in range(len(dt_instances)):
            label = dt_instances.labels[i]
            if label == 0:
                id = dt_instances.obj_idxes[i]
                box_with_score = np.concatenate([dt_instances.boxes[i], dt_instances.scores[i:i+1]], axis=-1)
                ret.append(np.concatenate((box_with_score, [id + 1])).reshape(1, -1))  # +1 as MOT benchmark requires positive

        if len(ret) > 0:
            online_targets = self.tracker.update(np.concatenate(ret))
            
            online_ret = []
            for t in online_targets:
                online_ret.append(np.array([t.tlbr[0], t.tlbr[1], t.tlbr[2], t.tlbr[3], t.score, t.track_id]).reshape(1, -1))

            if len(online_ret) > 0:
                return np.concatenate(online_ret)
        
        return np.empty((0, 6))
        


def load_label(label_path: str, img_size: tuple) -> dict:
    labels0 = np.loadtxt(label_path, dtype=np.float32).reshape(-1, 6)
    h, w = img_size
    # Normalized cewh to pixel xyxy format
    labels = labels0.copy()
    labels[:, 2] = w * (labels0[:, 2] - labels0[:, 4] / 2)
    labels[:, 3] = h * (labels0[:, 3] - labels0[:, 5] / 2)
    labels[:, 4] = w * (labels0[:, 2] + labels0[:, 4] / 2)
    labels[:, 5] = h * (labels0[:, 3] + labels0[:, 5] / 2)
    targets = {'boxes': [], 'labels': [], 'area': []}
    num_boxes = len(labels)

    visited_ids = set()
    for label in labels[:num_boxes]:
        obj_id = label[1]
        if obj_id in visited_ids:
            continue
        visited_ids.add(obj_id)
        targets['boxes'].append(label[2:6].tolist())
        targets['area'].append(label[4] * label[5])
        targets['labels'].append(0)
    targets['boxes'] = np.asarray(targets['boxes'])
    targets['area'] = np.asarray(targets['area'])
    targets['labels'] = np.asarray(targets['labels'])
    return targets


def filter_pub_det(res_file, pub_det_file, filter_iou=False):
    frame_boxes = {}
    with open(pub_det_file, 'r') as f:
        lines = f.readlines()
        for line in lines:
            if len(line) == 0:
                continue
            elements = line.strip().split(',')
            frame_id = int(elements[0])
            x1, y1, w, h = elements[2:6]
            x1, y1, w, h = float(x1), float(y1), float(w), float(h)
            x2 = x1 + w - 1
            y2 = y1 + h - 1
            if frame_id not in frame_boxes:
                frame_boxes[frame_id] = []
            frame_boxes[frame_id].append([x1, y1, x2, y2])

    for frame, boxes in frame_boxes.items():
        frame_boxes[frame] = np.array(boxes)

    ids = {}
    num_filter_box = 0
    with open(res_file, 'r') as f:
        lines = list(f.readlines())
    with open(res_file, 'w') as f:
        for line in lines:
            if len(line) == 0:
                continue
            elements = line.strip().split(',')
            frame_id, obj_id = elements[:2]
            frame_id = int(frame_id)
            obj_id = int(obj_id)
            x1, y1, w, h = elements[2:6]
            x1, y1, w, h = float(x1), float(y1), float(w), float(h)
            x2 = x1 + w - 1
            y2 = y1 + h - 1
            if obj_id not in ids:
                # track initialization.
                if frame_id not in frame_boxes:
                    num_filter_box += 1
                    print("filter init box {} {}".format(frame_id, obj_id))
                    continue
                pub_dt_boxes = frame_boxes[frame_id]
                dt_box = np.array([[x1, y1, x2, y2]])
                if filter_iou:
                    max_iou = bbox_iou(dt_box, pub_dt_boxes).max()
                    if max_iou < 0.5:
                        num_filter_box += 1
                        print("filter init box {} {}".format(frame_id, obj_id))
                        continue
                else:
                    pub_dt_centers = (pub_dt_boxes[:, :2] + pub_dt_boxes[:, 2:4]) * 0.5
                    x_inside = (dt_box[0, 0] <= pub_dt_centers[:, 0]) & (dt_box[0, 2] >= pub_dt_centers[:, 0])
                    y_inside = (dt_box[0, 1] <= pub_dt_centers[:, 1]) & (dt_box[0, 3] >= pub_dt_centers[:, 1])
                    center_inside: np.ndarray = x_inside & y_inside
                    if not center_inside.any():
                        num_filter_box += 1
                        print("filter init box {} {}".format(frame_id, obj_id))
                        continue
                print("save init track {} {}".format(frame_id, obj_id))
                ids[obj_id] = True
            f.write(line)

    print("totally {} boxes are filtered.".format(num_filter_box))


class Detector(object):
    def __init__(self, args, model=None, seq_num=2):

        self.args = args
        self.detr = model

        self.seq_num = seq_num
        img_list = os.listdir(os.path.join(self.args.mot_path, self.seq_num, 'img1'))
        img_list = [os.path.join(self.args.mot_path, self.seq_num, 'img1', _) for _ in img_list if
                    ('jpg' in _) or ('png' in _)]

        self.img_list = sorted(img_list)
        self.img_len = len(self.img_list)
        self.tr_tracker = MOTR()

        '''
        common settings
        '''
        self.img_height = 800
        self.img_width = 1536
        self.mean = [0.485, 0.456, 0.406]
        self.std = [0.229, 0.224, 0.225]

        self.save_path = os.path.join(self.args.output_dir, 'results/{}'.format(seq_num))
        os.makedirs(self.save_path, exist_ok=True)

        self.predict_path = os.path.join(self.args.output_dir, 'preds', self.seq_num)
        os.makedirs(self.predict_path, exist_ok=True)
        if os.path.exists(os.path.join(self.predict_path, 'gt.txt')):
            os.remove(os.path.join(self.predict_path, 'gt.txt'))

    def load_img_from_file(self,f_path):
        label_path = f_path.replace('images', 'labels_with_ids').replace('.png', '.txt').replace('.jpg', '.txt')
        cur_img = cv2.imread(f_path)
        cur_img = cv2.cvtColor(cur_img, cv2.COLOR_BGR2RGB)
        targets = load_label(label_path, cur_img.shape[:2]) if os.path.exists(label_path) else None
        return cur_img, targets

    def init_img(self, img):
        ori_img = img.copy()
        self.seq_h, self.seq_w = img.shape[:2]
        scale = self.img_height / min(self.seq_h, self.seq_w)
        if max(self.seq_h, self.seq_w) * scale > self.img_width:
            scale = self.img_width / max(self.seq_h, self.seq_w)
        target_h = int(self.seq_h * scale)
        target_w = int(self.seq_w * scale)
        img = cv2.resize(img, (target_w, target_h))
        img = F.normalize(F.to_tensor(img), self.mean, self.std)
        img = img.unsqueeze(0)
        return img, ori_img

    @staticmethod
    def filter_dt_by_score(dt_instances: Instances, prob_threshold: float) -> Instances:
        keep = dt_instances.scores > prob_threshold
        return dt_instances[keep]

    @staticmethod
    def filter_dt_by_area(dt_instances: Instances, area_threshold: float) -> Instances:
        wh = dt_instances.boxes[:, 2:4] - dt_instances.boxes[:, 0:2]
        areas = wh[:, 0] * wh[:, 1]
        keep = areas > area_threshold
        return dt_instances[keep]

    @staticmethod
    def write_results(txt_path, frame_id, bbox_xyxy, identities):
        save_format = '{frame},{id},{x1},{y1},{w},{h},1,-1,-1,-1\n'
        with open(txt_path, 'a') as f:
            for xyxy, track_id in zip(bbox_xyxy, identities):
                if track_id < 0 or track_id is None:
                    continue
                x1, y1, x2, y2 = xyxy
                w, h = x2 - x1, y2 - y1
                line = save_format.format(frame=int(frame_id), id=int(track_id), x1=x1, y1=y1, w=w, h=h)
                f.write(line)

    def eval_seq(self):
        data_root = os.path.join(self.args.mot_path)
        result_filename = os.path.join(self.predict_path, 'gt.txt')
        evaluator = Evaluator(data_root, self.seq_num)
        accs = evaluator.eval_file(result_filename)
        return accs

    @staticmethod
    def visualize_img_with_bbox(img_path, img, dt_instances: Instances, ref_pts=None, gt_boxes=None):
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        if dt_instances.has('scores'):
            img_show = draw_bboxes(img, np.concatenate([dt_instances.boxes, dt_instances.scores.reshape(-1, 1)], axis=-1), dt_instances.obj_idxes)
        else:
            img_show = draw_bboxes(img, dt_instances.boxes, dt_instances.obj_idxes)
#         if ref_pts is not None:
#             img_show = draw_points(img_show, ref_pts)
#         if gt_boxes is not None:
#             img_show = draw_bboxes(img_show, gt_boxes, identities=np.ones((len(gt_boxes), )) * -1)
        cv2.imwrite(img_path, img_show)

    def detect(self, prob_threshold=0.2, area_threshold=100, vis=False):
        total_dts = 0
        track_instances = None
        max_id = 0
        
        # we only consider val split (second half images)
        for i in tqdm(range((int(self.img_len / 2)), self.img_len)):
#         for i in tqdm(range(0, self.img_len)):
            img, targets = self.load_img_from_file(self.img_list[i])
            cur_img, ori_img = self.init_img(img)

            # track_instances = None
            if track_instances is not None:
                track_instances.remove('boxes')
                track_instances.remove('labels')

            res = self.detr.inference_single_image(cur_img.cuda().float(), (self.seq_h, self.seq_w), track_instances)
            track_instances = res['track_instances']
            max_id = max(max_id, track_instances.obj_idxes.max().item())

            print("ref points.shape={}".format(res['ref_pts'].shape))
            all_ref_pts = tensor_to_numpy(res['ref_pts'][0, :, :2])
            dt_instances = track_instances.to(torch.device('cpu'))
            
            # filter det instances by score.
            dt_instances = self.filter_dt_by_score(dt_instances, prob_threshold)
            dt_instances = self.filter_dt_by_area(dt_instances, area_threshold)

            total_dts += len(dt_instances)

            if vis:
                # for visual
                cur_vis_img_path = os.path.join(self.save_path, 'frame_{:0>8d}.jpg'.format(i))
                gt_boxes = None
                self.visualize_img_with_bbox(cur_vis_img_path, ori_img, dt_instances, ref_pts=all_ref_pts, gt_boxes=gt_boxes)

            tracker_outputs = self.tr_tracker.update(dt_instances)
            
            self.write_results(txt_path=os.path.join(self.predict_path, 'gt.txt'),
                               frame_id=(i + 1),
                               bbox_xyxy=tracker_outputs[:, :4],
                               identities=tracker_outputs[:, 5])
        print("totally {} dts max_id={}".format(total_dts, max_id))


if __name__ == '__main__':

    parser = argparse.ArgumentParser('DETR training and evaluation script', parents=[get_args_parser()])
    args = parser.parse_args()
    if args.output_dir:
        Path(args.output_dir).mkdir(parents=True, exist_ok=True)

    # load model and weights
    detr, _, _ = build_model(args)
    checkpoint = torch.load(args.resume, map_location='cpu')
    detr = load_model(detr, args.resume)
    detr = detr.cuda()
    detr.eval()

#     seq_nums = ['ADL-Rundle-6', 'ETH-Bahnhof', 'KITTI-13', 'PETS09-S2L1', 'TUD-Stadtmitte', 'ADL-Rundle-8', 'KITTI-17',
#                 'ETH-Pedcross2', 'ETH-Sunnyday', 'TUD-Campus', 'Venice-2']
    seq_nums = ['MOT17-02-SDP',
                'MOT17-04-SDP',
                'MOT17-05-SDP',
                'MOT17-09-SDP',
                'MOT17-10-SDP',
                'MOT17-11-SDP',
                'MOT17-13-SDP']
    accs = []
    seqs = []

    for seq_num in seq_nums:
        print("solve {}".format(seq_num))
        det = Detector(args, model=detr, seq_num=seq_num)
        det.detect(vis=False)
        accs.append(det.eval_seq())
        seqs.append(seq_num)

    metrics = mm.metrics.motchallenge_metrics
    mh = mm.metrics.create()
    summary = Evaluator.get_summary(accs, seqs, metrics)
    strsummary = mm.io.render_summary(
        summary,
        formatters=mh.formatters,
        namemap=mm.io.motchallenge_metric_names
    )
    print(strsummary)
    with open("eval_log.txt", 'a') as f:
        print(strsummary, file=f)