Spaces:
Runtime error
Runtime error
File size: 11,931 Bytes
7734d5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import numpy as np
import torchvision
import time
import math
import os
import copy
import pdb
import argparse
import sys
import cv2
import skimage.io
import skimage.transform
import skimage.color
import skimage
import torch
import model
from torch.utils.data import Dataset, DataLoader
from torchvision import datasets, models, transforms
from dataloader import CSVDataset, collater, Resizer, AspectRatioBasedSampler, Augmenter, UnNormalizer, Normalizer, RGB_MEAN, RGB_STD
from scipy.optimize import linear_sum_assignment
# assert torch.__version__.split('.')[1] == '4'
print('CUDA available: {}'.format(torch.cuda.is_available()))
color_list = [(0, 0, 255), (255, 0, 0), (0, 255, 0), (255, 0, 255), (0, 255, 255), (255, 255, 0), (128, 0, 255),
(0, 128, 255), (128, 255, 0), (0, 255, 128), (255, 128, 0), (255, 0, 128), (128, 128, 255), (128, 255, 128), (255, 128, 128), (128, 128, 0), (128, 0, 128)]
class detect_rect:
def __init__(self):
self.curr_frame = 0
self.curr_rect = np.array([0, 0, 1, 1])
self.next_rect = np.array([0, 0, 1, 1])
self.conf = 0
self.id = 0
@property
def position(self):
x = (self.curr_rect[0] + self.curr_rect[2])/2
y = (self.curr_rect[1] + self.curr_rect[3])/2
return np.array([x, y])
@property
def size(self):
w = self.curr_rect[2] - self.curr_rect[0]
h = self.curr_rect[3] - self.curr_rect[1]
return np.array([w, h])
class tracklet:
def __init__(self, det_rect):
self.id = det_rect.id
self.rect_list = [det_rect]
self.rect_num = 1
self.last_rect = det_rect
self.last_frame = det_rect.curr_frame
self.no_match_frame = 0
def add_rect(self, det_rect):
self.rect_list.append(det_rect)
self.rect_num = self.rect_num + 1
self.last_rect = det_rect
self.last_frame = det_rect.curr_frame
@property
def velocity(self):
if(self.rect_num < 2):
return (0, 0)
elif(self.rect_num < 6):
return (self.rect_list[self.rect_num - 1].position - self.rect_list[self.rect_num - 2].position) / (self.rect_list[self.rect_num - 1].curr_frame - self.rect_list[self.rect_num - 2].curr_frame)
else:
v1 = (self.rect_list[self.rect_num - 1].position - self.rect_list[self.rect_num - 4].position) / (self.rect_list[self.rect_num - 1].curr_frame - self.rect_list[self.rect_num - 4].curr_frame)
v2 = (self.rect_list[self.rect_num - 2].position - self.rect_list[self.rect_num - 5].position) / (self.rect_list[self.rect_num - 2].curr_frame - self.rect_list[self.rect_num - 5].curr_frame)
v3 = (self.rect_list[self.rect_num - 3].position - self.rect_list[self.rect_num - 6].position) / (self.rect_list[self.rect_num - 3].curr_frame - self.rect_list[self.rect_num - 6].curr_frame)
return (v1 + v2 + v3) / 3
def cal_iou(rect1, rect2):
x1, y1, x2, y2 = rect1
x3, y3, x4, y4 = rect2
i_w = min(x2, x4) - max(x1, x3)
i_h = min(y2, y4) - max(y1, y3)
if(i_w <= 0 or i_h <= 0):
return 0
i_s = i_w * i_h
s_1 = (x2 - x1) * (y2 - y1)
s_2 = (x4 - x3) * (y4 - y3)
return float(i_s) / (s_1 + s_2 - i_s)
def cal_simi(det_rect1, det_rect2):
return cal_iou(det_rect1.next_rect, det_rect2.curr_rect)
def cal_simi_track_det(track, det_rect):
if(det_rect.curr_frame <= track.last_frame):
print("cal_simi_track_det error")
return 0
elif(det_rect.curr_frame - track.last_frame == 1):
return cal_iou(track.last_rect.next_rect, det_rect.curr_rect)
else:
pred_rect = track.last_rect.curr_rect + np.append(track.velocity, track.velocity) * (det_rect.curr_frame - track.last_frame)
return cal_iou(pred_rect, det_rect.curr_rect)
def track_det_match(tracklet_list, det_rect_list, min_iou = 0.5):
num1 = len(tracklet_list)
num2 = len(det_rect_list)
cost_mat = np.zeros((num1, num2))
for i in range(num1):
for j in range(num2):
cost_mat[i, j] = -cal_simi_track_det(tracklet_list[i], det_rect_list[j])
match_result = linear_sum_assignment(cost_mat)
match_result = np.asarray(match_result)
match_result = np.transpose(match_result)
matches, unmatched1, unmatched2 = [], [], []
for i in range(num1):
if i not in match_result[:, 0]:
unmatched1.append(i)
for j in range(num2):
if j not in match_result[:, 1]:
unmatched2.append(j)
for i, j in match_result:
if cost_mat[i, j] > -min_iou:
unmatched1.append(i)
unmatched2.append(j)
else:
matches.append((i, j))
return matches, unmatched1, unmatched2
def draw_caption(image, box, caption, color):
b = np.array(box).astype(int)
cv2.putText(image, caption, (b[0], b[1] - 8), cv2.FONT_HERSHEY_PLAIN, 2, color, 2)
def run_each_dataset(model_dir, retinanet, dataset_path, subset, cur_dataset):
print(cur_dataset)
img_list = os.listdir(os.path.join(dataset_path, subset, cur_dataset, 'img1'))
img_list = [os.path.join(dataset_path, subset, cur_dataset, 'img1', _) for _ in img_list if ('jpg' in _) or ('png' in _)]
img_list = sorted(img_list)
img_len = len(img_list)
last_feat = None
confidence_threshold = 0.4
IOU_threshold = 0.5
retention_threshold = 10
det_list_all = []
tracklet_all = []
max_id = 0
max_draw_len = 100
draw_interval = 5
img_width = 1920
img_height = 1080
fps = 30
for i in range(img_len):
det_list_all.append([])
for idx in range((int(img_len / 2)), img_len + 1):
i = idx - 1
print('tracking: ', i)
with torch.no_grad():
data_path1 = img_list[min(idx, img_len - 1)]
img_origin1 = skimage.io.imread(data_path1)
img_h, img_w, _ = img_origin1.shape
img_height, img_width = img_h, img_w
resize_h, resize_w = math.ceil(img_h / 32) * 32, math.ceil(img_w / 32) * 32
img1 = np.zeros((resize_h, resize_w, 3), dtype=img_origin1.dtype)
img1[:img_h, :img_w, :] = img_origin1
img1 = (img1.astype(np.float32) / 255.0 - np.array([[RGB_MEAN]])) / np.array([[RGB_STD]])
img1 = torch.from_numpy(img1).permute(2, 0, 1).view(1, 3, resize_h, resize_w)
scores, transformed_anchors, last_feat = retinanet(img1.cuda().float(), last_feat=last_feat)
# if idx > 0:
if idx > (int(img_len / 2)):
idxs = np.where(scores>0.1)
for j in range(idxs[0].shape[0]):
bbox = transformed_anchors[idxs[0][j], :]
x1 = int(bbox[0])
y1 = int(bbox[1])
x2 = int(bbox[2])
y2 = int(bbox[3])
x3 = int(bbox[4])
y3 = int(bbox[5])
x4 = int(bbox[6])
y4 = int(bbox[7])
det_conf = float(scores[idxs[0][j]])
det_rect = detect_rect()
det_rect.curr_frame = idx
det_rect.curr_rect = np.array([x1, y1, x2, y2])
det_rect.next_rect = np.array([x3, y3, x4, y4])
det_rect.conf = det_conf
if det_rect.conf > confidence_threshold:
det_list_all[det_rect.curr_frame - 1].append(det_rect)
# if i == 0:
if i == int(img_len / 2):
for j in range(len(det_list_all[i])):
det_list_all[i][j].id = j + 1
max_id = max(max_id, j + 1)
track = tracklet(det_list_all[i][j])
tracklet_all.append(track)
continue
matches, unmatched1, unmatched2 = track_det_match(tracklet_all, det_list_all[i], IOU_threshold)
for j in range(len(matches)):
det_list_all[i][matches[j][1]].id = tracklet_all[matches[j][0]].id
det_list_all[i][matches[j][1]].id = tracklet_all[matches[j][0]].id
tracklet_all[matches[j][0]].add_rect(det_list_all[i][matches[j][1]])
delete_track_list = []
for j in range(len(unmatched1)):
tracklet_all[unmatched1[j]].no_match_frame = tracklet_all[unmatched1[j]].no_match_frame + 1
if(tracklet_all[unmatched1[j]].no_match_frame >= retention_threshold):
delete_track_list.append(unmatched1[j])
origin_index = set([k for k in range(len(tracklet_all))])
delete_index = set(delete_track_list)
left_index = list(origin_index - delete_index)
tracklet_all = [tracklet_all[k] for k in left_index]
for j in range(len(unmatched2)):
det_list_all[i][unmatched2[j]].id = max_id + 1
max_id = max_id + 1
track = tracklet(det_list_all[i][unmatched2[j]])
tracklet_all.append(track)
#**************visualize tracking result and save evaluate file****************
fout_tracking = open(os.path.join(model_dir, 'results', cur_dataset + '.txt'), 'w')
save_img_dir = os.path.join(model_dir, 'results', cur_dataset)
if not os.path.exists(save_img_dir):
os.makedirs(save_img_dir)
out_video = os.path.join(model_dir, 'results', cur_dataset + '.mp4')
videoWriter = cv2.VideoWriter(out_video, cv2.VideoWriter_fourcc('m', 'p', '4', 'v'), fps, (img_width, img_height))
id_dict = {}
for i in range((int(img_len / 2)), img_len):
print('saving: ', i)
img = cv2.imread(img_list[i])
for j in range(len(det_list_all[i])):
x1, y1, x2, y2 = det_list_all[i][j].curr_rect.astype(int)
trace_id = det_list_all[i][j].id
id_dict.setdefault(str(trace_id),[]).append((int((x1+x2)/2), y2))
draw_trace_id = str(trace_id)
draw_caption(img, (x1, y1, x2, y2), draw_trace_id, color=color_list[trace_id % len(color_list)])
cv2.rectangle(img, (x1, y1), (x2, y2), color=color_list[trace_id % len(color_list)], thickness=2)
trace_len = len(id_dict[str(trace_id)])
trace_len_draw = min(max_draw_len, trace_len)
for k in range(trace_len_draw - draw_interval):
if(k % draw_interval == 0):
draw_point1 = id_dict[str(trace_id)][trace_len - k - 1]
draw_point2 = id_dict[str(trace_id)][trace_len - k - 1 - draw_interval]
cv2.line(img, draw_point1, draw_point2, color=color_list[trace_id % len(color_list)], thickness=2)
fout_tracking.write(str(i+1) + ',' + str(trace_id) + ',' + str(x1) + ',' + str(y1) + ',' + str(x2 - x1) + ',' + str(y2 - y1) + ',-1,-1,-1,-1\n')
cv2.imwrite(os.path.join(save_img_dir, str(i + 1).zfill(6) + '.jpg'), img)
videoWriter.write(img)
# cv2.waitKey(0)
fout_tracking.close()
videoWriter.release()
def run_from_train(model_dir, root_path):
if not os.path.exists(os.path.join(model_dir, 'results')):
os.makedirs(os.path.join(model_dir, 'results'))
retinanet = torch.load(os.path.join(model_dir, 'model_final.pt'))
use_gpu = True
if use_gpu: retinanet = retinanet.cuda()
retinanet.eval()
for seq_num in [2, 4, 5, 9, 10, 11, 13]:
run_each_dataset(model_dir, retinanet, root_path, 'train', 'MOT17-{:02d}'.format(seq_num))
for seq_num in [1, 3, 6, 7, 8, 12, 14]:
run_each_dataset(model_dir, retinanet, root_path, 'test', 'MOT17-{:02d}'.format(seq_num))
def main(args=None):
parser = argparse.ArgumentParser(description='Simple script for testing a CTracker network.')
parser.add_argument('--dataset_path', default='/dockerdata/home/jeromepeng/data/MOT/MOT17/', type=str, help='Dataset path, location of the images sequence.')
parser.add_argument('--model_dir', default='./trained_model/', help='Path to model (.pt) file.')
parser.add_argument('--model_path', default='./trained_model/model_final.pth', help='Path to model (.pt) file.')
parser = parser.parse_args(args)
if not os.path.exists(os.path.join(parser.model_dir, 'results')):
os.makedirs(os.path.join(parser.model_dir, 'results'))
retinanet = model.resnet50(num_classes=1, pretrained=True)
# retinanet_save = torch.load(os.path.join(parser.model_dir, 'model_final.pth'))
retinanet_save = torch.load(os.path.join(parser.model_path))
# rename moco pre-trained keys
state_dict = retinanet_save.state_dict()
for k in list(state_dict.keys()):
# retain only encoder up to before the embedding layer
if k.startswith('module.'):
# remove prefix
state_dict[k[len("module."):]] = state_dict[k]
# delete renamed or unused k
del state_dict[k]
retinanet.load_state_dict(state_dict)
use_gpu = True
if use_gpu: retinanet = retinanet.cuda()
retinanet.eval()
for seq_num in [2, 4, 5, 9, 10, 11, 13]:
run_each_dataset(parser.model_dir, retinanet, parser.dataset_path, 'train', 'MOT17-{:02d}'.format(seq_num))
# for seq_num in [1, 3, 6, 7, 8, 12, 14]:
# run_each_dataset(parser.model_dir, retinanet, parser.dataset_path, 'test', 'MOT17-{:02d}'.format(seq_num))
if __name__ == '__main__':
main()
|