Spaces:
Runtime error
Runtime error
File size: 3,923 Bytes
7734d5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import json
import os
"""
cd datasets
mkdir -p mix_det/annotations
cp mot/annotations/val_half.json mix_det/annotations/val_half.json
cp mot/annotations/test.json mix_det/annotations/test.json
cd mix_det
ln -s ../mot/train mot_train
ln -s ../crowdhuman/CrowdHuman_train crowdhuman_train
ln -s ../crowdhuman/CrowdHuman_val crowdhuman_val
ln -s ../Cityscapes cp_train
ln -s ../ETHZ ethz_train
cd ..
"""
mot_json = json.load(open('datasets/mot/annotations/train_half.json','r'))
img_list = list()
for img in mot_json['images']:
img['file_name'] = 'mot_train/' + img['file_name']
img_list.append(img)
ann_list = list()
for ann in mot_json['annotations']:
ann_list.append(ann)
video_list = mot_json['videos']
category_list = mot_json['categories']
print('mot17')
max_img = 10000
max_ann = 2000000
max_video = 10
crowdhuman_json = json.load(open('datasets/crowdhuman/annotations/train.json','r'))
img_id_count = 0
for img in crowdhuman_json['images']:
img_id_count += 1
img['file_name'] = 'crowdhuman_train/' + img['file_name']
img['frame_id'] = img_id_count
img['prev_image_id'] = img['id'] + max_img
img['next_image_id'] = img['id'] + max_img
img['id'] = img['id'] + max_img
img['video_id'] = max_video
img_list.append(img)
for ann in crowdhuman_json['annotations']:
ann['id'] = ann['id'] + max_ann
ann['image_id'] = ann['image_id'] + max_img
ann_list.append(ann)
print('crowdhuman_train')
video_list.append({
'id': max_video,
'file_name': 'crowdhuman_train'
})
max_img = 30000
max_ann = 10000000
crowdhuman_val_json = json.load(open('datasets/crowdhuman/annotations/val.json','r'))
img_id_count = 0
for img in crowdhuman_val_json['images']:
img_id_count += 1
img['file_name'] = 'crowdhuman_val/' + img['file_name']
img['frame_id'] = img_id_count
img['prev_image_id'] = img['id'] + max_img
img['next_image_id'] = img['id'] + max_img
img['id'] = img['id'] + max_img
img['video_id'] = max_video
img_list.append(img)
for ann in crowdhuman_val_json['annotations']:
ann['id'] = ann['id'] + max_ann
ann['image_id'] = ann['image_id'] + max_img
ann_list.append(ann)
print('crowdhuman_val')
video_list.append({
'id': max_video,
'file_name': 'crowdhuman_val'
})
max_img = 40000
max_ann = 20000000
ethz_json = json.load(open('datasets/ETHZ/annotations/train.json','r'))
img_id_count = 0
for img in ethz_json['images']:
img_id_count += 1
img['file_name'] = 'ethz_train/' + img['file_name'][5:]
img['frame_id'] = img_id_count
img['prev_image_id'] = img['id'] + max_img
img['next_image_id'] = img['id'] + max_img
img['id'] = img['id'] + max_img
img['video_id'] = max_video
img_list.append(img)
for ann in ethz_json['annotations']:
ann['id'] = ann['id'] + max_ann
ann['image_id'] = ann['image_id'] + max_img
ann_list.append(ann)
print('ETHZ')
video_list.append({
'id': max_video,
'file_name': 'ethz'
})
max_img = 50000
max_ann = 25000000
cp_json = json.load(open('datasets/Cityscapes/annotations/train.json','r'))
img_id_count = 0
for img in cp_json['images']:
img_id_count += 1
img['file_name'] = 'cp_train/' + img['file_name'][11:]
img['frame_id'] = img_id_count
img['prev_image_id'] = img['id'] + max_img
img['next_image_id'] = img['id'] + max_img
img['id'] = img['id'] + max_img
img['video_id'] = max_video
img_list.append(img)
for ann in cp_json['annotations']:
ann['id'] = ann['id'] + max_ann
ann['image_id'] = ann['image_id'] + max_img
ann_list.append(ann)
print('Cityscapes')
video_list.append({
'id': max_video,
'file_name': 'cityperson'
})
mix_json = dict()
mix_json['images'] = img_list
mix_json['annotations'] = ann_list
mix_json['videos'] = video_list
mix_json['categories'] = category_list
json.dump(mix_json, open('datasets/mix_det/annotations/train.json','w')) |