File size: 5,692 Bytes
7734d5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import argparse
import os

import cv2
import numpy as np
from loguru import logger

import onnxruntime

from yolox.data.data_augment import preproc as preprocess
from yolox.utils import mkdir, multiclass_nms, demo_postprocess, vis
from yolox.utils.visualize import plot_tracking
from yolox.tracker.byte_tracker import BYTETracker
from yolox.tracking_utils.timer import Timer


def make_parser():
    parser = argparse.ArgumentParser("onnxruntime inference sample")
    parser.add_argument(
        "-m",
        "--model",
        type=str,
        default="../../bytetrack_s.onnx",
        help="Input your onnx model.",
    )
    parser.add_argument(
        "-i",
        "--video_path",
        type=str,
        default='../../videos/palace.mp4',
        help="Path to your input image.",
    )
    parser.add_argument(
        "-o",
        "--output_dir",
        type=str,
        default='demo_output',
        help="Path to your output directory.",
    )
    parser.add_argument(
        "-s",
        "--score_thr",
        type=float,
        default=0.1,
        help="Score threshould to filter the result.",
    )
    parser.add_argument(
        "-n",
        "--nms_thr",
        type=float,
        default=0.7,
        help="NMS threshould.",
    )
    parser.add_argument(
        "--input_shape",
        type=str,
        default="608,1088",
        help="Specify an input shape for inference.",
    )
    parser.add_argument(
        "--with_p6",
        action="store_true",
        help="Whether your model uses p6 in FPN/PAN.",
    )
    # tracking args
    parser.add_argument("--track_thresh", type=float, default=0.5, help="tracking confidence threshold")
    parser.add_argument("--track_buffer", type=int, default=30, help="the frames for keep lost tracks")
    parser.add_argument("--match_thresh", type=int, default=0.8, help="matching threshold for tracking")
    parser.add_argument('--min-box-area', type=float, default=10, help='filter out tiny boxes')
    parser.add_argument("--mot20", dest="mot20", default=False, action="store_true", help="test mot20.")
    return parser


class Predictor(object):
    def __init__(self, args):
        self.rgb_means = (0.485, 0.456, 0.406)
        self.std = (0.229, 0.224, 0.225)
        self.args = args
        self.session = onnxruntime.InferenceSession(args.model)
        self.input_shape = tuple(map(int, args.input_shape.split(',')))

    def inference(self, ori_img, timer):
        img_info = {"id": 0}
        height, width = ori_img.shape[:2]
        img_info["height"] = height
        img_info["width"] = width
        img_info["raw_img"] = ori_img

        img, ratio = preprocess(ori_img, self.input_shape, self.rgb_means, self.std)
        img_info["ratio"] = ratio
        ort_inputs = {self.session.get_inputs()[0].name: img[None, :, :, :]}
        timer.tic()
        output = self.session.run(None, ort_inputs)
        predictions = demo_postprocess(output[0], self.input_shape, p6=self.args.with_p6)[0]

        boxes = predictions[:, :4]
        scores = predictions[:, 4:5] * predictions[:, 5:]

        boxes_xyxy = np.ones_like(boxes)
        boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2]/2.
        boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3]/2.
        boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2]/2.
        boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3]/2.
        boxes_xyxy /= ratio
        dets = multiclass_nms(boxes_xyxy, scores, nms_thr=self.args.nms_thr, score_thr=self.args.score_thr)
        return dets[:, :-1], img_info


def imageflow_demo(predictor, args):
    cap = cv2.VideoCapture(args.video_path)
    width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)  # float
    height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)  # float
    fps = cap.get(cv2.CAP_PROP_FPS)
    save_folder = args.output_dir
    os.makedirs(save_folder, exist_ok=True)
    save_path = os.path.join(save_folder, args.video_path.split("/")[-1])
    logger.info(f"video save_path is {save_path}")
    vid_writer = cv2.VideoWriter(
        save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (int(width), int(height))
    )
    tracker = BYTETracker(args, frame_rate=30)
    timer = Timer()
    frame_id = 0
    results = []
    while True:
        if frame_id % 20 == 0:
            logger.info('Processing frame {} ({:.2f} fps)'.format(frame_id, 1. / max(1e-5, timer.average_time)))
        ret_val, frame = cap.read()
        if ret_val:
            outputs, img_info = predictor.inference(frame, timer)
            online_targets = tracker.update(outputs, [img_info['height'], img_info['width']], [img_info['height'], img_info['width']])
            online_tlwhs = []
            online_ids = []
            online_scores = []
            for t in online_targets:
                tlwh = t.tlwh
                tid = t.track_id
                vertical = tlwh[2] / tlwh[3] > 1.6
                if tlwh[2] * tlwh[3] > args.min_box_area and not vertical:
                    online_tlwhs.append(tlwh)
                    online_ids.append(tid)
                    online_scores.append(t.score)
            timer.toc()
            results.append((frame_id + 1, online_tlwhs, online_ids, online_scores))
            online_im = plot_tracking(img_info['raw_img'], online_tlwhs, online_ids, frame_id=frame_id + 1,
                                      fps=1. / timer.average_time)
            vid_writer.write(online_im)
            ch = cv2.waitKey(1)
            if ch == 27 or ch == ord("q") or ch == ord("Q"):
                break
        else:
            break
        frame_id += 1


if __name__ == '__main__':
    args = make_parser().parse_args()

    predictor = Predictor(args)
    imageflow_demo(predictor, args)