File size: 6,690 Bytes
7734d5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import numpy as np
import json
import cv2


# Use the same script for MOT16
DATA_PATH = 'datasets/MOT20'
OUT_PATH = os.path.join(DATA_PATH, 'annotations')
SPLITS = ['train_half', 'val_half', 'train', 'test']  # --> split training data to train_half and val_half.
HALF_VIDEO = True
CREATE_SPLITTED_ANN = True
CREATE_SPLITTED_DET = True


if __name__ == '__main__':

    if not os.path.exists(OUT_PATH):
        os.makedirs(OUT_PATH)

    for split in SPLITS:
        if split == "test":
            data_path = os.path.join(DATA_PATH, 'test')
        else:
            data_path = os.path.join(DATA_PATH, 'train')
        out_path = os.path.join(OUT_PATH, '{}.json'.format(split))
        out = {'images': [], 'annotations': [], 'videos': [],
               'categories': [{'id': 1, 'name': 'pedestrian'}]}
        seqs = os.listdir(data_path)
        image_cnt = 0
        ann_cnt = 0
        video_cnt = 0
        tid_curr = 0
        tid_last = -1
        for seq in sorted(seqs):
            if '.DS_Store' in seq:
                continue
            video_cnt += 1  # video sequence number.
            out['videos'].append({'id': video_cnt, 'file_name': seq})
            seq_path = os.path.join(data_path, seq)
            img_path = os.path.join(seq_path, 'img1')
            ann_path = os.path.join(seq_path, 'gt/gt.txt')
            images = os.listdir(img_path)
            num_images = len([image for image in images if 'jpg' in image])  # half and half

            if HALF_VIDEO and ('half' in split):
                image_range = [0, num_images // 2] if 'train' in split else \
                              [num_images // 2 + 1, num_images - 1]
            else:
                image_range = [0, num_images - 1]

            for i in range(num_images):
                if i < image_range[0] or i > image_range[1]:
                    continue
                img = cv2.imread(os.path.join(data_path, '{}/img1/{:06d}.jpg'.format(seq, i + 1)))
                height, width = img.shape[:2]
                image_info = {'file_name': '{}/img1/{:06d}.jpg'.format(seq, i + 1),  # image name.
                              'id': image_cnt + i + 1,  # image number in the entire training set.
                              'frame_id': i + 1 - image_range[0],  # image number in the video sequence, starting from 1.
                              'prev_image_id': image_cnt + i if i > 0 else -1,  # image number in the entire training set.
                              'next_image_id': image_cnt + i + 2 if i < num_images - 1 else -1,
                              'video_id': video_cnt,
                              'height': height, 'width': width}
                out['images'].append(image_info)
            print('{}: {} images'.format(seq, num_images))
            if split != 'test':
                det_path = os.path.join(seq_path, 'det/det.txt')
                anns = np.loadtxt(ann_path, dtype=np.float32, delimiter=',')
                dets = np.loadtxt(det_path, dtype=np.float32, delimiter=',')
                if CREATE_SPLITTED_ANN and ('half' in split):
                    anns_out = np.array([anns[i] for i in range(anns.shape[0])
                                         if int(anns[i][0]) - 1 >= image_range[0] and
                                         int(anns[i][0]) - 1 <= image_range[1]], np.float32) 
                    anns_out[:, 0] -= image_range[0]
                    gt_out = os.path.join(seq_path, 'gt/gt_{}.txt'.format(split))
                    fout = open(gt_out, 'w')
                    for o in anns_out:
                        fout.write('{:d},{:d},{:d},{:d},{:d},{:d},{:d},{:d},{:.6f}\n'.format(
                                    int(o[0]), int(o[1]), int(o[2]), int(o[3]), int(o[4]), int(o[5]),
                                    int(o[6]), int(o[7]), o[8]))
                    fout.close()
                if CREATE_SPLITTED_DET and ('half' in split):
                    dets_out = np.array([dets[i] for i in range(dets.shape[0])
                                         if int(dets[i][0]) - 1 >= image_range[0] and
                                         int(dets[i][0]) - 1 <= image_range[1]], np.float32)
                    dets_out[:, 0] -= image_range[0]
                    det_out = os.path.join(seq_path, 'det/det_{}.txt'.format(split))
                    dout = open(det_out, 'w')
                    for o in dets_out:
                        dout.write('{:d},{:d},{:.1f},{:.1f},{:.1f},{:.1f},{:.6f}\n'.format(
                                    int(o[0]), int(o[1]), float(o[2]), float(o[3]), float(o[4]), float(o[5]),
                                    float(o[6])))
                    dout.close()

                print('{} ann images'.format(int(anns[:, 0].max())))
                for i in range(anns.shape[0]):
                    frame_id = int(anns[i][0])
                    if frame_id - 1 < image_range[0] or frame_id - 1 > image_range[1]:
                        continue
                    track_id = int(anns[i][1])
                    cat_id = int(anns[i][7])
                    ann_cnt += 1
                    if not ('15' in DATA_PATH):
                        #if not (float(anns[i][8]) >= 0.25):  # visibility.
                            #continue
                        if not (int(anns[i][6]) == 1):  # whether ignore.
                            continue
                        if int(anns[i][7]) in [3, 4, 5, 6, 9, 10, 11]:  # Non-person
                            continue
                        if int(anns[i][7]) in [2, 7, 8, 12]:  # Ignored person
                            #category_id = -1
                            continue
                        else:
                            category_id = 1  # pedestrian(non-static)
                            if not track_id == tid_last:
                                tid_curr += 1
                                tid_last = track_id
                    else:
                        category_id = 1
                    ann = {'id': ann_cnt,
                           'category_id': category_id,
                           'image_id': image_cnt + frame_id,
                           'track_id': tid_curr,
                           'bbox': anns[i][2:6].tolist(),
                           'conf': float(anns[i][6]),
                           'iscrowd': 0,
                           'area': float(anns[i][4] * anns[i][5])}
                    out['annotations'].append(ann)
            image_cnt += num_images
            print(tid_curr, tid_last)
        print('loaded {} for {} images and {} samples'.format(split, len(out['images']), len(out['annotations'])))
        json.dump(out, open(out_path, 'w'))