File size: 6,028 Bytes
7734d5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.

from torch import nn

from .network_blocks import BaseConv, CSPLayer, DWConv, Focus, ResLayer, SPPBottleneck


class Darknet(nn.Module):
    # number of blocks from dark2 to dark5.
    depth2blocks = {21: [1, 2, 2, 1], 53: [2, 8, 8, 4]}

    def __init__(
        self,
        depth,
        in_channels=3,
        stem_out_channels=32,
        out_features=("dark3", "dark4", "dark5"),
    ):
        """
        Args:
            depth (int): depth of darknet used in model, usually use [21, 53] for this param.
            in_channels (int): number of input channels, for example, use 3 for RGB image.
            stem_out_channels (int): number of output chanels of darknet stem.
                It decides channels of darknet layer2 to layer5.
            out_features (Tuple[str]): desired output layer name.
        """
        super().__init__()
        assert out_features, "please provide output features of Darknet"
        self.out_features = out_features
        self.stem = nn.Sequential(
            BaseConv(in_channels, stem_out_channels, ksize=3, stride=1, act="lrelu"),
            *self.make_group_layer(stem_out_channels, num_blocks=1, stride=2),
        )
        in_channels = stem_out_channels * 2  # 64

        num_blocks = Darknet.depth2blocks[depth]
        # create darknet with `stem_out_channels` and `num_blocks` layers.
        # to make model structure more clear, we don't use `for` statement in python.
        self.dark2 = nn.Sequential(
            *self.make_group_layer(in_channels, num_blocks[0], stride=2)
        )
        in_channels *= 2  # 128
        self.dark3 = nn.Sequential(
            *self.make_group_layer(in_channels, num_blocks[1], stride=2)
        )
        in_channels *= 2  # 256
        self.dark4 = nn.Sequential(
            *self.make_group_layer(in_channels, num_blocks[2], stride=2)
        )
        in_channels *= 2  # 512

        self.dark5 = nn.Sequential(
            *self.make_group_layer(in_channels, num_blocks[3], stride=2),
            *self.make_spp_block([in_channels, in_channels * 2], in_channels * 2),
        )

    def make_group_layer(self, in_channels: int, num_blocks: int, stride: int = 1):
        "starts with conv layer then has `num_blocks` `ResLayer`"
        return [
            BaseConv(in_channels, in_channels * 2, ksize=3, stride=stride, act="lrelu"),
            *[(ResLayer(in_channels * 2)) for _ in range(num_blocks)],
        ]

    def make_spp_block(self, filters_list, in_filters):
        m = nn.Sequential(
            *[
                BaseConv(in_filters, filters_list[0], 1, stride=1, act="lrelu"),
                BaseConv(filters_list[0], filters_list[1], 3, stride=1, act="lrelu"),
                SPPBottleneck(
                    in_channels=filters_list[1],
                    out_channels=filters_list[0],
                    activation="lrelu",
                ),
                BaseConv(filters_list[0], filters_list[1], 3, stride=1, act="lrelu"),
                BaseConv(filters_list[1], filters_list[0], 1, stride=1, act="lrelu"),
            ]
        )
        return m

    def forward(self, x):
        outputs = {}
        x = self.stem(x)
        outputs["stem"] = x
        x = self.dark2(x)
        outputs["dark2"] = x
        x = self.dark3(x)
        outputs["dark3"] = x
        x = self.dark4(x)
        outputs["dark4"] = x
        x = self.dark5(x)
        outputs["dark5"] = x
        return {k: v for k, v in outputs.items() if k in self.out_features}


class CSPDarknet(nn.Module):
    def __init__(
        self,
        dep_mul,
        wid_mul,
        out_features=("dark3", "dark4", "dark5"),
        depthwise=False,
        act="silu",
    ):
        super().__init__()
        assert out_features, "please provide output features of Darknet"
        self.out_features = out_features
        Conv = DWConv if depthwise else BaseConv

        base_channels = int(wid_mul * 64)  # 64
        base_depth = max(round(dep_mul * 3), 1)  # 3

        # stem
        self.stem = Focus(3, base_channels, ksize=3, act=act)

        # dark2
        self.dark2 = nn.Sequential(
            Conv(base_channels, base_channels * 2, 3, 2, act=act),
            CSPLayer(
                base_channels * 2,
                base_channels * 2,
                n=base_depth,
                depthwise=depthwise,
                act=act,
            ),
        )

        # dark3
        self.dark3 = nn.Sequential(
            Conv(base_channels * 2, base_channels * 4, 3, 2, act=act),
            CSPLayer(
                base_channels * 4,
                base_channels * 4,
                n=base_depth * 3,
                depthwise=depthwise,
                act=act,
            ),
        )

        # dark4
        self.dark4 = nn.Sequential(
            Conv(base_channels * 4, base_channels * 8, 3, 2, act=act),
            CSPLayer(
                base_channels * 8,
                base_channels * 8,
                n=base_depth * 3,
                depthwise=depthwise,
                act=act,
            ),
        )

        # dark5
        self.dark5 = nn.Sequential(
            Conv(base_channels * 8, base_channels * 16, 3, 2, act=act),
            SPPBottleneck(base_channels * 16, base_channels * 16, activation=act),
            CSPLayer(
                base_channels * 16,
                base_channels * 16,
                n=base_depth,
                shortcut=False,
                depthwise=depthwise,
                act=act,
            ),
        )

    def forward(self, x):
        outputs = {}
        x = self.stem(x)
        outputs["stem"] = x
        x = self.dark2(x)
        outputs["dark2"] = x
        x = self.dark3(x)
        outputs["dark3"] = x
        x = self.dark4(x)
        outputs["dark4"] = x
        x = self.dark5(x)
        outputs["dark5"] = x
        return {k: v for k, v in outputs.items() if k in self.out_features}