File size: 25,341 Bytes
7734d5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
from collections import defaultdict
from loguru import logger
from tqdm import tqdm

import torch

from yolox.utils import (
    gather,
    is_main_process,
    postprocess,
    synchronize,
    time_synchronized,
    xyxy2xywh
)
from yolox.tracker.byte_tracker import BYTETracker
from yolox.sort_tracker.sort import Sort
from yolox.deepsort_tracker.deepsort import DeepSort
from yolox.motdt_tracker.motdt_tracker import OnlineTracker

import contextlib
import io
import os
import itertools
import json
import tempfile
import time


def write_results(filename, results):
    save_format = '{frame},{id},{x1},{y1},{w},{h},{s},-1,-1,-1\n'
    with open(filename, 'w') as f:
        for frame_id, tlwhs, track_ids, scores in results:
            for tlwh, track_id, score in zip(tlwhs, track_ids, scores):
                if track_id < 0:
                    continue
                x1, y1, w, h = tlwh
                line = save_format.format(frame=frame_id, id=track_id, x1=round(x1, 1), y1=round(y1, 1), w=round(w, 1), h=round(h, 1), s=round(score, 2))
                f.write(line)
    logger.info('save results to {}'.format(filename))


def write_results_no_score(filename, results):
    save_format = '{frame},{id},{x1},{y1},{w},{h},-1,-1,-1,-1\n'
    with open(filename, 'w') as f:
        for frame_id, tlwhs, track_ids in results:
            for tlwh, track_id in zip(tlwhs, track_ids):
                if track_id < 0:
                    continue
                x1, y1, w, h = tlwh
                line = save_format.format(frame=frame_id, id=track_id, x1=round(x1, 1), y1=round(y1, 1), w=round(w, 1), h=round(h, 1))
                f.write(line)
    logger.info('save results to {}'.format(filename))


class MOTEvaluator:
    """
    COCO AP Evaluation class.  All the data in the val2017 dataset are processed
    and evaluated by COCO API.
    """

    def __init__(
        self, args, dataloader, img_size, confthre, nmsthre, num_classes):
        """
        Args:
            dataloader (Dataloader): evaluate dataloader.
            img_size (int): image size after preprocess. images are resized
                to squares whose shape is (img_size, img_size).
            confthre (float): confidence threshold ranging from 0 to 1, which
                is defined in the config file.
            nmsthre (float): IoU threshold of non-max supression ranging from 0 to 1.
        """
        self.dataloader = dataloader
        self.img_size = img_size
        self.confthre = confthre
        self.nmsthre = nmsthre
        self.num_classes = num_classes
        self.args = args

    def evaluate(
        self,
        model,
        distributed=False,
        half=False,
        trt_file=None,
        decoder=None,
        test_size=None,
        result_folder=None
    ):
        """
        COCO average precision (AP) Evaluation. Iterate inference on the test dataset
        and the results are evaluated by COCO API.

        NOTE: This function will change training mode to False, please save states if needed.

        Args:
            model : model to evaluate.

        Returns:
            ap50_95 (float) : COCO AP of IoU=50:95
            ap50 (float) : COCO AP of IoU=50
            summary (sr): summary info of evaluation.
        """
        # TODO half to amp_test
        tensor_type = torch.cuda.HalfTensor if half else torch.cuda.FloatTensor
        model = model.eval()
        if half:
            model = model.half()
        ids = []
        data_list = []
        results = []
        video_names = defaultdict()
        progress_bar = tqdm if is_main_process() else iter

        inference_time = 0
        track_time = 0
        n_samples = len(self.dataloader) - 1

        if trt_file is not None:
            from torch2trt import TRTModule

            model_trt = TRTModule()
            model_trt.load_state_dict(torch.load(trt_file))

            x = torch.ones(1, 3, test_size[0], test_size[1]).cuda()
            model(x)
            model = model_trt
            
        tracker = BYTETracker(self.args)
        ori_thresh = self.args.track_thresh
        for cur_iter, (imgs, _, info_imgs, ids) in enumerate(
            progress_bar(self.dataloader)
        ):
            with torch.no_grad():
                # init tracker
                frame_id = info_imgs[2].item()
                video_id = info_imgs[3].item()
                img_file_name = info_imgs[4]
                video_name = img_file_name[0].split('/')[0]
                if video_name == 'MOT17-05-FRCNN' or video_name == 'MOT17-06-FRCNN':
                    self.args.track_buffer = 14
                elif video_name == 'MOT17-13-FRCNN' or video_name == 'MOT17-14-FRCNN':
                    self.args.track_buffer = 25
                else:
                    self.args.track_buffer = 30

                if video_name == 'MOT17-01-FRCNN':
                    self.args.track_thresh = 0.65
                elif video_name == 'MOT17-06-FRCNN':
                    self.args.track_thresh = 0.65
                elif video_name == 'MOT17-12-FRCNN':
                    self.args.track_thresh = 0.7
                elif video_name == 'MOT17-14-FRCNN':
                    self.args.track_thresh = 0.67
                else:
                    self.args.track_thresh = ori_thresh
                
                if video_name == 'MOT20-06' or video_name == 'MOT20-08':
                    self.args.track_thresh = 0.3
                else:
                    self.args.track_thresh = ori_thresh

                if video_name not in video_names:
                    video_names[video_id] = video_name
                if frame_id == 1:
                    tracker = BYTETracker(self.args)
                    if len(results) != 0:
                        result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id - 1]))
                        write_results(result_filename, results)
                        results = []

                imgs = imgs.type(tensor_type)

                # skip the the last iters since batchsize might be not enough for batch inference
                is_time_record = cur_iter < len(self.dataloader) - 1
                if is_time_record:
                    start = time.time()

                outputs = model(imgs)
                if decoder is not None:
                    outputs = decoder(outputs, dtype=outputs.type())

                outputs = postprocess(outputs, self.num_classes, self.confthre, self.nmsthre)
            
                if is_time_record:
                    infer_end = time_synchronized()
                    inference_time += infer_end - start

            output_results = self.convert_to_coco_format(outputs, info_imgs, ids)
            data_list.extend(output_results)

            # run tracking
            if outputs[0] is not None:
                online_targets = tracker.update(outputs[0], info_imgs, self.img_size)
                online_tlwhs = []
                online_ids = []
                online_scores = []
                for t in online_targets:
                    tlwh = t.tlwh
                    tid = t.track_id
                    vertical = tlwh[2] / tlwh[3] > 1.6
                    if tlwh[2] * tlwh[3] > self.args.min_box_area and not vertical:
                        online_tlwhs.append(tlwh)
                        online_ids.append(tid)
                        online_scores.append(t.score)
                # save results
                results.append((frame_id, online_tlwhs, online_ids, online_scores))

            if is_time_record:
                track_end = time_synchronized()
                track_time += track_end - infer_end
            
            if cur_iter == len(self.dataloader) - 1:
                result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id]))
                write_results(result_filename, results)

        statistics = torch.cuda.FloatTensor([inference_time, track_time, n_samples])
        if distributed:
            data_list = gather(data_list, dst=0)
            data_list = list(itertools.chain(*data_list))
            torch.distributed.reduce(statistics, dst=0)

        eval_results = self.evaluate_prediction(data_list, statistics)
        synchronize()
        return eval_results

    def evaluate_sort(
        self,
        model,
        distributed=False,
        half=False,
        trt_file=None,
        decoder=None,
        test_size=None,
        result_folder=None
    ):
        """
        COCO average precision (AP) Evaluation. Iterate inference on the test dataset
        and the results are evaluated by COCO API.

        NOTE: This function will change training mode to False, please save states if needed.

        Args:
            model : model to evaluate.

        Returns:
            ap50_95 (float) : COCO AP of IoU=50:95
            ap50 (float) : COCO AP of IoU=50
            summary (sr): summary info of evaluation.
        """
        # TODO half to amp_test
        tensor_type = torch.cuda.HalfTensor if half else torch.cuda.FloatTensor
        model = model.eval()
        if half:
            model = model.half()
        ids = []
        data_list = []
        results = []
        video_names = defaultdict()
        progress_bar = tqdm if is_main_process() else iter

        inference_time = 0
        track_time = 0
        n_samples = len(self.dataloader) - 1

        if trt_file is not None:
            from torch2trt import TRTModule

            model_trt = TRTModule()
            model_trt.load_state_dict(torch.load(trt_file))

            x = torch.ones(1, 3, test_size[0], test_size[1]).cuda()
            model(x)
            model = model_trt
            
        tracker = Sort(self.args.track_thresh)
        
        for cur_iter, (imgs, _, info_imgs, ids) in enumerate(
            progress_bar(self.dataloader)
        ):
            with torch.no_grad():
                # init tracker
                frame_id = info_imgs[2].item()
                video_id = info_imgs[3].item()
                img_file_name = info_imgs[4]
                video_name = img_file_name[0].split('/')[0]

                if video_name not in video_names:
                    video_names[video_id] = video_name
                if frame_id == 1:
                    tracker = Sort(self.args.track_thresh)
                    if len(results) != 0:
                        result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id - 1]))
                        write_results_no_score(result_filename, results)
                        results = []

                imgs = imgs.type(tensor_type)

                # skip the the last iters since batchsize might be not enough for batch inference
                is_time_record = cur_iter < len(self.dataloader) - 1
                if is_time_record:
                    start = time.time()

                outputs = model(imgs)
                if decoder is not None:
                    outputs = decoder(outputs, dtype=outputs.type())

                outputs = postprocess(outputs, self.num_classes, self.confthre, self.nmsthre)
            
                if is_time_record:
                    infer_end = time_synchronized()
                    inference_time += infer_end - start

            output_results = self.convert_to_coco_format(outputs, info_imgs, ids)
            data_list.extend(output_results)

            # run tracking
            online_targets = tracker.update(outputs[0], info_imgs, self.img_size)
            online_tlwhs = []
            online_ids = []
            for t in online_targets:
                tlwh = [t[0], t[1], t[2] - t[0], t[3] - t[1]]
                tid = t[4]
                vertical = tlwh[2] / tlwh[3] > 1.6
                if tlwh[2] * tlwh[3] > self.args.min_box_area and not vertical:
                    online_tlwhs.append(tlwh)
                    online_ids.append(tid)
            # save results
            results.append((frame_id, online_tlwhs, online_ids))

            if is_time_record:
                track_end = time_synchronized()
                track_time += track_end - infer_end
            
            if cur_iter == len(self.dataloader) - 1:
                result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id]))
                write_results_no_score(result_filename, results)

        statistics = torch.cuda.FloatTensor([inference_time, track_time, n_samples])
        if distributed:
            data_list = gather(data_list, dst=0)
            data_list = list(itertools.chain(*data_list))
            torch.distributed.reduce(statistics, dst=0)

        eval_results = self.evaluate_prediction(data_list, statistics)
        synchronize()
        return eval_results

    def evaluate_deepsort(
        self,
        model,
        distributed=False,
        half=False,
        trt_file=None,
        decoder=None,
        test_size=None,
        result_folder=None,
        model_folder=None
    ):
        """
        COCO average precision (AP) Evaluation. Iterate inference on the test dataset
        and the results are evaluated by COCO API.

        NOTE: This function will change training mode to False, please save states if needed.

        Args:
            model : model to evaluate.

        Returns:
            ap50_95 (float) : COCO AP of IoU=50:95
            ap50 (float) : COCO AP of IoU=50
            summary (sr): summary info of evaluation.
        """
        # TODO half to amp_test
        tensor_type = torch.cuda.HalfTensor if half else torch.cuda.FloatTensor
        model = model.eval()
        if half:
            model = model.half()
        ids = []
        data_list = []
        results = []
        video_names = defaultdict()
        progress_bar = tqdm if is_main_process() else iter

        inference_time = 0
        track_time = 0
        n_samples = len(self.dataloader) - 1

        if trt_file is not None:
            from torch2trt import TRTModule

            model_trt = TRTModule()
            model_trt.load_state_dict(torch.load(trt_file))

            x = torch.ones(1, 3, test_size[0], test_size[1]).cuda()
            model(x)
            model = model_trt
            
        tracker = DeepSort(model_folder, min_confidence=self.args.track_thresh)
        
        for cur_iter, (imgs, _, info_imgs, ids) in enumerate(
            progress_bar(self.dataloader)
        ):
            with torch.no_grad():
                # init tracker
                frame_id = info_imgs[2].item()
                video_id = info_imgs[3].item()
                img_file_name = info_imgs[4]
                video_name = img_file_name[0].split('/')[0]

                if video_name not in video_names:
                    video_names[video_id] = video_name
                if frame_id == 1:
                    tracker = DeepSort(model_folder, min_confidence=self.args.track_thresh)
                    if len(results) != 0:
                        result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id - 1]))
                        write_results_no_score(result_filename, results)
                        results = []

                imgs = imgs.type(tensor_type)

                # skip the the last iters since batchsize might be not enough for batch inference
                is_time_record = cur_iter < len(self.dataloader) - 1
                if is_time_record:
                    start = time.time()

                outputs = model(imgs)
                if decoder is not None:
                    outputs = decoder(outputs, dtype=outputs.type())

                outputs = postprocess(outputs, self.num_classes, self.confthre, self.nmsthre)
            
                if is_time_record:
                    infer_end = time_synchronized()
                    inference_time += infer_end - start

            output_results = self.convert_to_coco_format(outputs, info_imgs, ids)
            data_list.extend(output_results)

            # run tracking
            online_targets = tracker.update(outputs[0], info_imgs, self.img_size, img_file_name[0])
            online_tlwhs = []
            online_ids = []
            for t in online_targets:
                tlwh = [t[0], t[1], t[2] - t[0], t[3] - t[1]]
                tid = t[4]
                vertical = tlwh[2] / tlwh[3] > 1.6
                if tlwh[2] * tlwh[3] > self.args.min_box_area and not vertical:
                    online_tlwhs.append(tlwh)
                    online_ids.append(tid)
            # save results
            results.append((frame_id, online_tlwhs, online_ids))

            if is_time_record:
                track_end = time_synchronized()
                track_time += track_end - infer_end
            
            if cur_iter == len(self.dataloader) - 1:
                result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id]))
                write_results_no_score(result_filename, results)

        statistics = torch.cuda.FloatTensor([inference_time, track_time, n_samples])
        if distributed:
            data_list = gather(data_list, dst=0)
            data_list = list(itertools.chain(*data_list))
            torch.distributed.reduce(statistics, dst=0)

        eval_results = self.evaluate_prediction(data_list, statistics)
        synchronize()
        return eval_results

    def evaluate_motdt(
        self,
        model,
        distributed=False,
        half=False,
        trt_file=None,
        decoder=None,
        test_size=None,
        result_folder=None,
        model_folder=None
    ):
        """
        COCO average precision (AP) Evaluation. Iterate inference on the test dataset
        and the results are evaluated by COCO API.

        NOTE: This function will change training mode to False, please save states if needed.

        Args:
            model : model to evaluate.

        Returns:
            ap50_95 (float) : COCO AP of IoU=50:95
            ap50 (float) : COCO AP of IoU=50
            summary (sr): summary info of evaluation.
        """
        # TODO half to amp_test
        tensor_type = torch.cuda.HalfTensor if half else torch.cuda.FloatTensor
        model = model.eval()
        if half:
            model = model.half()
        ids = []
        data_list = []
        results = []
        video_names = defaultdict()
        progress_bar = tqdm if is_main_process() else iter

        inference_time = 0
        track_time = 0
        n_samples = len(self.dataloader) - 1

        if trt_file is not None:
            from torch2trt import TRTModule

            model_trt = TRTModule()
            model_trt.load_state_dict(torch.load(trt_file))

            x = torch.ones(1, 3, test_size[0], test_size[1]).cuda()
            model(x)
            model = model_trt
            
        tracker = OnlineTracker(model_folder, min_cls_score=self.args.track_thresh)
        for cur_iter, (imgs, _, info_imgs, ids) in enumerate(
            progress_bar(self.dataloader)
        ):
            with torch.no_grad():
                # init tracker
                frame_id = info_imgs[2].item()
                video_id = info_imgs[3].item()
                img_file_name = info_imgs[4]
                video_name = img_file_name[0].split('/')[0]

                if video_name not in video_names:
                    video_names[video_id] = video_name
                if frame_id == 1:
                    tracker = OnlineTracker(model_folder, min_cls_score=self.args.track_thresh)
                    if len(results) != 0:
                        result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id - 1]))
                        write_results(result_filename, results)
                        results = []

                imgs = imgs.type(tensor_type)

                # skip the the last iters since batchsize might be not enough for batch inference
                is_time_record = cur_iter < len(self.dataloader) - 1
                if is_time_record:
                    start = time.time()

                outputs = model(imgs)
                if decoder is not None:
                    outputs = decoder(outputs, dtype=outputs.type())

                outputs = postprocess(outputs, self.num_classes, self.confthre, self.nmsthre)
            
                if is_time_record:
                    infer_end = time_synchronized()
                    inference_time += infer_end - start

            output_results = self.convert_to_coco_format(outputs, info_imgs, ids)
            data_list.extend(output_results)

            # run tracking
            online_targets = tracker.update(outputs[0], info_imgs, self.img_size, img_file_name[0])
            online_tlwhs = []
            online_ids = []
            online_scores = []
            for t in online_targets:
                tlwh = t.tlwh
                tid = t.track_id
                vertical = tlwh[2] / tlwh[3] > 1.6
                if tlwh[2] * tlwh[3] > self.args.min_box_area and not vertical:
                    online_tlwhs.append(tlwh)
                    online_ids.append(tid)
                    online_scores.append(t.score)
            # save results
            results.append((frame_id, online_tlwhs, online_ids, online_scores))

            if is_time_record:
                track_end = time_synchronized()
                track_time += track_end - infer_end
            
            if cur_iter == len(self.dataloader) - 1:
                result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id]))
                write_results(result_filename, results)

        statistics = torch.cuda.FloatTensor([inference_time, track_time, n_samples])
        if distributed:
            data_list = gather(data_list, dst=0)
            data_list = list(itertools.chain(*data_list))
            torch.distributed.reduce(statistics, dst=0)

        eval_results = self.evaluate_prediction(data_list, statistics)
        synchronize()
        return eval_results

    def convert_to_coco_format(self, outputs, info_imgs, ids):
        data_list = []
        for (output, img_h, img_w, img_id) in zip(
            outputs, info_imgs[0], info_imgs[1], ids
        ):
            if output is None:
                continue
            output = output.cpu()

            bboxes = output[:, 0:4]

            # preprocessing: resize
            scale = min(
                self.img_size[0] / float(img_h), self.img_size[1] / float(img_w)
            )
            bboxes /= scale
            bboxes = xyxy2xywh(bboxes)

            cls = output[:, 6]
            scores = output[:, 4] * output[:, 5]
            for ind in range(bboxes.shape[0]):
                label = self.dataloader.dataset.class_ids[int(cls[ind])]
                pred_data = {
                    "image_id": int(img_id),
                    "category_id": label,
                    "bbox": bboxes[ind].numpy().tolist(),
                    "score": scores[ind].numpy().item(),
                    "segmentation": [],
                }  # COCO json format
                data_list.append(pred_data)
        return data_list

    def evaluate_prediction(self, data_dict, statistics):
        if not is_main_process():
            return 0, 0, None

        logger.info("Evaluate in main process...")

        annType = ["segm", "bbox", "keypoints"]

        inference_time = statistics[0].item()
        track_time = statistics[1].item()
        n_samples = statistics[2].item()

        a_infer_time = 1000 * inference_time / (n_samples * self.dataloader.batch_size)
        a_track_time = 1000 * track_time / (n_samples * self.dataloader.batch_size)

        time_info = ", ".join(
            [
                "Average {} time: {:.2f} ms".format(k, v)
                for k, v in zip(
                    ["forward", "track", "inference"],
                    [a_infer_time, a_track_time, (a_infer_time + a_track_time)],
                )
            ]
        )

        info = time_info + "\n"

        # Evaluate the Dt (detection) json comparing with the ground truth
        if len(data_dict) > 0:
            cocoGt = self.dataloader.dataset.coco
            # TODO: since pycocotools can't process dict in py36, write data to json file.
            _, tmp = tempfile.mkstemp()
            json.dump(data_dict, open(tmp, "w"))
            cocoDt = cocoGt.loadRes(tmp)
            '''
            try:
                from yolox.layers import COCOeval_opt as COCOeval
            except ImportError:
                from pycocotools import cocoeval as COCOeval
                logger.warning("Use standard COCOeval.")
            '''
            #from pycocotools.cocoeval import COCOeval
            from yolox.layers import COCOeval_opt as COCOeval
            cocoEval = COCOeval(cocoGt, cocoDt, annType[1])
            cocoEval.evaluate()
            cocoEval.accumulate()
            redirect_string = io.StringIO()
            with contextlib.redirect_stdout(redirect_string):
                cocoEval.summarize()
            info += redirect_string.getvalue()
            return cocoEval.stats[0], cocoEval.stats[1], info
        else:
            return 0, 0, info