Spaces:
Runtime error
Runtime error
File size: 25,341 Bytes
7734d5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
from collections import defaultdict
from loguru import logger
from tqdm import tqdm
import torch
from yolox.utils import (
gather,
is_main_process,
postprocess,
synchronize,
time_synchronized,
xyxy2xywh
)
from yolox.tracker.byte_tracker import BYTETracker
from yolox.sort_tracker.sort import Sort
from yolox.deepsort_tracker.deepsort import DeepSort
from yolox.motdt_tracker.motdt_tracker import OnlineTracker
import contextlib
import io
import os
import itertools
import json
import tempfile
import time
def write_results(filename, results):
save_format = '{frame},{id},{x1},{y1},{w},{h},{s},-1,-1,-1\n'
with open(filename, 'w') as f:
for frame_id, tlwhs, track_ids, scores in results:
for tlwh, track_id, score in zip(tlwhs, track_ids, scores):
if track_id < 0:
continue
x1, y1, w, h = tlwh
line = save_format.format(frame=frame_id, id=track_id, x1=round(x1, 1), y1=round(y1, 1), w=round(w, 1), h=round(h, 1), s=round(score, 2))
f.write(line)
logger.info('save results to {}'.format(filename))
def write_results_no_score(filename, results):
save_format = '{frame},{id},{x1},{y1},{w},{h},-1,-1,-1,-1\n'
with open(filename, 'w') as f:
for frame_id, tlwhs, track_ids in results:
for tlwh, track_id in zip(tlwhs, track_ids):
if track_id < 0:
continue
x1, y1, w, h = tlwh
line = save_format.format(frame=frame_id, id=track_id, x1=round(x1, 1), y1=round(y1, 1), w=round(w, 1), h=round(h, 1))
f.write(line)
logger.info('save results to {}'.format(filename))
class MOTEvaluator:
"""
COCO AP Evaluation class. All the data in the val2017 dataset are processed
and evaluated by COCO API.
"""
def __init__(
self, args, dataloader, img_size, confthre, nmsthre, num_classes):
"""
Args:
dataloader (Dataloader): evaluate dataloader.
img_size (int): image size after preprocess. images are resized
to squares whose shape is (img_size, img_size).
confthre (float): confidence threshold ranging from 0 to 1, which
is defined in the config file.
nmsthre (float): IoU threshold of non-max supression ranging from 0 to 1.
"""
self.dataloader = dataloader
self.img_size = img_size
self.confthre = confthre
self.nmsthre = nmsthre
self.num_classes = num_classes
self.args = args
def evaluate(
self,
model,
distributed=False,
half=False,
trt_file=None,
decoder=None,
test_size=None,
result_folder=None
):
"""
COCO average precision (AP) Evaluation. Iterate inference on the test dataset
and the results are evaluated by COCO API.
NOTE: This function will change training mode to False, please save states if needed.
Args:
model : model to evaluate.
Returns:
ap50_95 (float) : COCO AP of IoU=50:95
ap50 (float) : COCO AP of IoU=50
summary (sr): summary info of evaluation.
"""
# TODO half to amp_test
tensor_type = torch.cuda.HalfTensor if half else torch.cuda.FloatTensor
model = model.eval()
if half:
model = model.half()
ids = []
data_list = []
results = []
video_names = defaultdict()
progress_bar = tqdm if is_main_process() else iter
inference_time = 0
track_time = 0
n_samples = len(self.dataloader) - 1
if trt_file is not None:
from torch2trt import TRTModule
model_trt = TRTModule()
model_trt.load_state_dict(torch.load(trt_file))
x = torch.ones(1, 3, test_size[0], test_size[1]).cuda()
model(x)
model = model_trt
tracker = BYTETracker(self.args)
ori_thresh = self.args.track_thresh
for cur_iter, (imgs, _, info_imgs, ids) in enumerate(
progress_bar(self.dataloader)
):
with torch.no_grad():
# init tracker
frame_id = info_imgs[2].item()
video_id = info_imgs[3].item()
img_file_name = info_imgs[4]
video_name = img_file_name[0].split('/')[0]
if video_name == 'MOT17-05-FRCNN' or video_name == 'MOT17-06-FRCNN':
self.args.track_buffer = 14
elif video_name == 'MOT17-13-FRCNN' or video_name == 'MOT17-14-FRCNN':
self.args.track_buffer = 25
else:
self.args.track_buffer = 30
if video_name == 'MOT17-01-FRCNN':
self.args.track_thresh = 0.65
elif video_name == 'MOT17-06-FRCNN':
self.args.track_thresh = 0.65
elif video_name == 'MOT17-12-FRCNN':
self.args.track_thresh = 0.7
elif video_name == 'MOT17-14-FRCNN':
self.args.track_thresh = 0.67
else:
self.args.track_thresh = ori_thresh
if video_name == 'MOT20-06' or video_name == 'MOT20-08':
self.args.track_thresh = 0.3
else:
self.args.track_thresh = ori_thresh
if video_name not in video_names:
video_names[video_id] = video_name
if frame_id == 1:
tracker = BYTETracker(self.args)
if len(results) != 0:
result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id - 1]))
write_results(result_filename, results)
results = []
imgs = imgs.type(tensor_type)
# skip the the last iters since batchsize might be not enough for batch inference
is_time_record = cur_iter < len(self.dataloader) - 1
if is_time_record:
start = time.time()
outputs = model(imgs)
if decoder is not None:
outputs = decoder(outputs, dtype=outputs.type())
outputs = postprocess(outputs, self.num_classes, self.confthre, self.nmsthre)
if is_time_record:
infer_end = time_synchronized()
inference_time += infer_end - start
output_results = self.convert_to_coco_format(outputs, info_imgs, ids)
data_list.extend(output_results)
# run tracking
if outputs[0] is not None:
online_targets = tracker.update(outputs[0], info_imgs, self.img_size)
online_tlwhs = []
online_ids = []
online_scores = []
for t in online_targets:
tlwh = t.tlwh
tid = t.track_id
vertical = tlwh[2] / tlwh[3] > 1.6
if tlwh[2] * tlwh[3] > self.args.min_box_area and not vertical:
online_tlwhs.append(tlwh)
online_ids.append(tid)
online_scores.append(t.score)
# save results
results.append((frame_id, online_tlwhs, online_ids, online_scores))
if is_time_record:
track_end = time_synchronized()
track_time += track_end - infer_end
if cur_iter == len(self.dataloader) - 1:
result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id]))
write_results(result_filename, results)
statistics = torch.cuda.FloatTensor([inference_time, track_time, n_samples])
if distributed:
data_list = gather(data_list, dst=0)
data_list = list(itertools.chain(*data_list))
torch.distributed.reduce(statistics, dst=0)
eval_results = self.evaluate_prediction(data_list, statistics)
synchronize()
return eval_results
def evaluate_sort(
self,
model,
distributed=False,
half=False,
trt_file=None,
decoder=None,
test_size=None,
result_folder=None
):
"""
COCO average precision (AP) Evaluation. Iterate inference on the test dataset
and the results are evaluated by COCO API.
NOTE: This function will change training mode to False, please save states if needed.
Args:
model : model to evaluate.
Returns:
ap50_95 (float) : COCO AP of IoU=50:95
ap50 (float) : COCO AP of IoU=50
summary (sr): summary info of evaluation.
"""
# TODO half to amp_test
tensor_type = torch.cuda.HalfTensor if half else torch.cuda.FloatTensor
model = model.eval()
if half:
model = model.half()
ids = []
data_list = []
results = []
video_names = defaultdict()
progress_bar = tqdm if is_main_process() else iter
inference_time = 0
track_time = 0
n_samples = len(self.dataloader) - 1
if trt_file is not None:
from torch2trt import TRTModule
model_trt = TRTModule()
model_trt.load_state_dict(torch.load(trt_file))
x = torch.ones(1, 3, test_size[0], test_size[1]).cuda()
model(x)
model = model_trt
tracker = Sort(self.args.track_thresh)
for cur_iter, (imgs, _, info_imgs, ids) in enumerate(
progress_bar(self.dataloader)
):
with torch.no_grad():
# init tracker
frame_id = info_imgs[2].item()
video_id = info_imgs[3].item()
img_file_name = info_imgs[4]
video_name = img_file_name[0].split('/')[0]
if video_name not in video_names:
video_names[video_id] = video_name
if frame_id == 1:
tracker = Sort(self.args.track_thresh)
if len(results) != 0:
result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id - 1]))
write_results_no_score(result_filename, results)
results = []
imgs = imgs.type(tensor_type)
# skip the the last iters since batchsize might be not enough for batch inference
is_time_record = cur_iter < len(self.dataloader) - 1
if is_time_record:
start = time.time()
outputs = model(imgs)
if decoder is not None:
outputs = decoder(outputs, dtype=outputs.type())
outputs = postprocess(outputs, self.num_classes, self.confthre, self.nmsthre)
if is_time_record:
infer_end = time_synchronized()
inference_time += infer_end - start
output_results = self.convert_to_coco_format(outputs, info_imgs, ids)
data_list.extend(output_results)
# run tracking
online_targets = tracker.update(outputs[0], info_imgs, self.img_size)
online_tlwhs = []
online_ids = []
for t in online_targets:
tlwh = [t[0], t[1], t[2] - t[0], t[3] - t[1]]
tid = t[4]
vertical = tlwh[2] / tlwh[3] > 1.6
if tlwh[2] * tlwh[3] > self.args.min_box_area and not vertical:
online_tlwhs.append(tlwh)
online_ids.append(tid)
# save results
results.append((frame_id, online_tlwhs, online_ids))
if is_time_record:
track_end = time_synchronized()
track_time += track_end - infer_end
if cur_iter == len(self.dataloader) - 1:
result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id]))
write_results_no_score(result_filename, results)
statistics = torch.cuda.FloatTensor([inference_time, track_time, n_samples])
if distributed:
data_list = gather(data_list, dst=0)
data_list = list(itertools.chain(*data_list))
torch.distributed.reduce(statistics, dst=0)
eval_results = self.evaluate_prediction(data_list, statistics)
synchronize()
return eval_results
def evaluate_deepsort(
self,
model,
distributed=False,
half=False,
trt_file=None,
decoder=None,
test_size=None,
result_folder=None,
model_folder=None
):
"""
COCO average precision (AP) Evaluation. Iterate inference on the test dataset
and the results are evaluated by COCO API.
NOTE: This function will change training mode to False, please save states if needed.
Args:
model : model to evaluate.
Returns:
ap50_95 (float) : COCO AP of IoU=50:95
ap50 (float) : COCO AP of IoU=50
summary (sr): summary info of evaluation.
"""
# TODO half to amp_test
tensor_type = torch.cuda.HalfTensor if half else torch.cuda.FloatTensor
model = model.eval()
if half:
model = model.half()
ids = []
data_list = []
results = []
video_names = defaultdict()
progress_bar = tqdm if is_main_process() else iter
inference_time = 0
track_time = 0
n_samples = len(self.dataloader) - 1
if trt_file is not None:
from torch2trt import TRTModule
model_trt = TRTModule()
model_trt.load_state_dict(torch.load(trt_file))
x = torch.ones(1, 3, test_size[0], test_size[1]).cuda()
model(x)
model = model_trt
tracker = DeepSort(model_folder, min_confidence=self.args.track_thresh)
for cur_iter, (imgs, _, info_imgs, ids) in enumerate(
progress_bar(self.dataloader)
):
with torch.no_grad():
# init tracker
frame_id = info_imgs[2].item()
video_id = info_imgs[3].item()
img_file_name = info_imgs[4]
video_name = img_file_name[0].split('/')[0]
if video_name not in video_names:
video_names[video_id] = video_name
if frame_id == 1:
tracker = DeepSort(model_folder, min_confidence=self.args.track_thresh)
if len(results) != 0:
result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id - 1]))
write_results_no_score(result_filename, results)
results = []
imgs = imgs.type(tensor_type)
# skip the the last iters since batchsize might be not enough for batch inference
is_time_record = cur_iter < len(self.dataloader) - 1
if is_time_record:
start = time.time()
outputs = model(imgs)
if decoder is not None:
outputs = decoder(outputs, dtype=outputs.type())
outputs = postprocess(outputs, self.num_classes, self.confthre, self.nmsthre)
if is_time_record:
infer_end = time_synchronized()
inference_time += infer_end - start
output_results = self.convert_to_coco_format(outputs, info_imgs, ids)
data_list.extend(output_results)
# run tracking
online_targets = tracker.update(outputs[0], info_imgs, self.img_size, img_file_name[0])
online_tlwhs = []
online_ids = []
for t in online_targets:
tlwh = [t[0], t[1], t[2] - t[0], t[3] - t[1]]
tid = t[4]
vertical = tlwh[2] / tlwh[3] > 1.6
if tlwh[2] * tlwh[3] > self.args.min_box_area and not vertical:
online_tlwhs.append(tlwh)
online_ids.append(tid)
# save results
results.append((frame_id, online_tlwhs, online_ids))
if is_time_record:
track_end = time_synchronized()
track_time += track_end - infer_end
if cur_iter == len(self.dataloader) - 1:
result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id]))
write_results_no_score(result_filename, results)
statistics = torch.cuda.FloatTensor([inference_time, track_time, n_samples])
if distributed:
data_list = gather(data_list, dst=0)
data_list = list(itertools.chain(*data_list))
torch.distributed.reduce(statistics, dst=0)
eval_results = self.evaluate_prediction(data_list, statistics)
synchronize()
return eval_results
def evaluate_motdt(
self,
model,
distributed=False,
half=False,
trt_file=None,
decoder=None,
test_size=None,
result_folder=None,
model_folder=None
):
"""
COCO average precision (AP) Evaluation. Iterate inference on the test dataset
and the results are evaluated by COCO API.
NOTE: This function will change training mode to False, please save states if needed.
Args:
model : model to evaluate.
Returns:
ap50_95 (float) : COCO AP of IoU=50:95
ap50 (float) : COCO AP of IoU=50
summary (sr): summary info of evaluation.
"""
# TODO half to amp_test
tensor_type = torch.cuda.HalfTensor if half else torch.cuda.FloatTensor
model = model.eval()
if half:
model = model.half()
ids = []
data_list = []
results = []
video_names = defaultdict()
progress_bar = tqdm if is_main_process() else iter
inference_time = 0
track_time = 0
n_samples = len(self.dataloader) - 1
if trt_file is not None:
from torch2trt import TRTModule
model_trt = TRTModule()
model_trt.load_state_dict(torch.load(trt_file))
x = torch.ones(1, 3, test_size[0], test_size[1]).cuda()
model(x)
model = model_trt
tracker = OnlineTracker(model_folder, min_cls_score=self.args.track_thresh)
for cur_iter, (imgs, _, info_imgs, ids) in enumerate(
progress_bar(self.dataloader)
):
with torch.no_grad():
# init tracker
frame_id = info_imgs[2].item()
video_id = info_imgs[3].item()
img_file_name = info_imgs[4]
video_name = img_file_name[0].split('/')[0]
if video_name not in video_names:
video_names[video_id] = video_name
if frame_id == 1:
tracker = OnlineTracker(model_folder, min_cls_score=self.args.track_thresh)
if len(results) != 0:
result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id - 1]))
write_results(result_filename, results)
results = []
imgs = imgs.type(tensor_type)
# skip the the last iters since batchsize might be not enough for batch inference
is_time_record = cur_iter < len(self.dataloader) - 1
if is_time_record:
start = time.time()
outputs = model(imgs)
if decoder is not None:
outputs = decoder(outputs, dtype=outputs.type())
outputs = postprocess(outputs, self.num_classes, self.confthre, self.nmsthre)
if is_time_record:
infer_end = time_synchronized()
inference_time += infer_end - start
output_results = self.convert_to_coco_format(outputs, info_imgs, ids)
data_list.extend(output_results)
# run tracking
online_targets = tracker.update(outputs[0], info_imgs, self.img_size, img_file_name[0])
online_tlwhs = []
online_ids = []
online_scores = []
for t in online_targets:
tlwh = t.tlwh
tid = t.track_id
vertical = tlwh[2] / tlwh[3] > 1.6
if tlwh[2] * tlwh[3] > self.args.min_box_area and not vertical:
online_tlwhs.append(tlwh)
online_ids.append(tid)
online_scores.append(t.score)
# save results
results.append((frame_id, online_tlwhs, online_ids, online_scores))
if is_time_record:
track_end = time_synchronized()
track_time += track_end - infer_end
if cur_iter == len(self.dataloader) - 1:
result_filename = os.path.join(result_folder, '{}.txt'.format(video_names[video_id]))
write_results(result_filename, results)
statistics = torch.cuda.FloatTensor([inference_time, track_time, n_samples])
if distributed:
data_list = gather(data_list, dst=0)
data_list = list(itertools.chain(*data_list))
torch.distributed.reduce(statistics, dst=0)
eval_results = self.evaluate_prediction(data_list, statistics)
synchronize()
return eval_results
def convert_to_coco_format(self, outputs, info_imgs, ids):
data_list = []
for (output, img_h, img_w, img_id) in zip(
outputs, info_imgs[0], info_imgs[1], ids
):
if output is None:
continue
output = output.cpu()
bboxes = output[:, 0:4]
# preprocessing: resize
scale = min(
self.img_size[0] / float(img_h), self.img_size[1] / float(img_w)
)
bboxes /= scale
bboxes = xyxy2xywh(bboxes)
cls = output[:, 6]
scores = output[:, 4] * output[:, 5]
for ind in range(bboxes.shape[0]):
label = self.dataloader.dataset.class_ids[int(cls[ind])]
pred_data = {
"image_id": int(img_id),
"category_id": label,
"bbox": bboxes[ind].numpy().tolist(),
"score": scores[ind].numpy().item(),
"segmentation": [],
} # COCO json format
data_list.append(pred_data)
return data_list
def evaluate_prediction(self, data_dict, statistics):
if not is_main_process():
return 0, 0, None
logger.info("Evaluate in main process...")
annType = ["segm", "bbox", "keypoints"]
inference_time = statistics[0].item()
track_time = statistics[1].item()
n_samples = statistics[2].item()
a_infer_time = 1000 * inference_time / (n_samples * self.dataloader.batch_size)
a_track_time = 1000 * track_time / (n_samples * self.dataloader.batch_size)
time_info = ", ".join(
[
"Average {} time: {:.2f} ms".format(k, v)
for k, v in zip(
["forward", "track", "inference"],
[a_infer_time, a_track_time, (a_infer_time + a_track_time)],
)
]
)
info = time_info + "\n"
# Evaluate the Dt (detection) json comparing with the ground truth
if len(data_dict) > 0:
cocoGt = self.dataloader.dataset.coco
# TODO: since pycocotools can't process dict in py36, write data to json file.
_, tmp = tempfile.mkstemp()
json.dump(data_dict, open(tmp, "w"))
cocoDt = cocoGt.loadRes(tmp)
'''
try:
from yolox.layers import COCOeval_opt as COCOeval
except ImportError:
from pycocotools import cocoeval as COCOeval
logger.warning("Use standard COCOeval.")
'''
#from pycocotools.cocoeval import COCOeval
from yolox.layers import COCOeval_opt as COCOeval
cocoEval = COCOeval(cocoGt, cocoDt, annType[1])
cocoEval.evaluate()
cocoEval.accumulate()
redirect_string = io.StringIO()
with contextlib.redirect_stdout(redirect_string):
cocoEval.summarize()
info += redirect_string.getvalue()
return cocoEval.stats[0], cocoEval.stats[1], info
else:
return 0, 0, info
|