Spaces:
Runtime error
Runtime error
File size: 10,932 Bytes
7734d5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.
from loguru import logger
import torch
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from yolox.data import DataPrefetcher
from yolox.utils import (
MeterBuffer,
ModelEMA,
all_reduce_norm,
get_model_info,
get_rank,
get_world_size,
gpu_mem_usage,
load_ckpt,
occupy_mem,
save_checkpoint,
setup_logger,
synchronize
)
import datetime
import os
import time
class Trainer:
def __init__(self, exp, args):
# init function only defines some basic attr, other attrs like model, optimizer are built in
# before_train methods.
self.exp = exp
self.args = args
# training related attr
self.max_epoch = exp.max_epoch
self.amp_training = args.fp16
self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
self.is_distributed = get_world_size() > 1
self.rank = get_rank()
self.local_rank = args.local_rank
self.device = "cuda:{}".format(self.local_rank)
self.use_model_ema = exp.ema
# data/dataloader related attr
self.data_type = torch.float16 if args.fp16 else torch.float32
self.input_size = exp.input_size
self.best_ap = 0
# metric record
self.meter = MeterBuffer(window_size=exp.print_interval)
self.file_name = os.path.join(exp.output_dir, args.experiment_name)
if self.rank == 0:
os.makedirs(self.file_name, exist_ok=True)
setup_logger(
self.file_name,
distributed_rank=self.rank,
filename="train_log.txt",
mode="a",
)
def train(self):
self.before_train()
try:
self.train_in_epoch()
except Exception:
raise
finally:
self.after_train()
def train_in_epoch(self):
for self.epoch in range(self.start_epoch, self.max_epoch):
self.before_epoch()
self.train_in_iter()
self.after_epoch()
def train_in_iter(self):
for self.iter in range(self.max_iter):
self.before_iter()
self.train_one_iter()
self.after_iter()
def train_one_iter(self):
iter_start_time = time.time()
inps, targets = self.prefetcher.next()
inps = inps.to(self.data_type)
targets = targets.to(self.data_type)
targets.requires_grad = False
data_end_time = time.time()
with torch.cuda.amp.autocast(enabled=self.amp_training):
outputs = self.model(inps, targets)
loss = outputs["total_loss"]
self.optimizer.zero_grad()
self.scaler.scale(loss).backward()
self.scaler.step(self.optimizer)
self.scaler.update()
if self.use_model_ema:
self.ema_model.update(self.model)
lr = self.lr_scheduler.update_lr(self.progress_in_iter + 1)
for param_group in self.optimizer.param_groups:
param_group["lr"] = lr
iter_end_time = time.time()
self.meter.update(
iter_time=iter_end_time - iter_start_time,
data_time=data_end_time - iter_start_time,
lr=lr,
**outputs,
)
def before_train(self):
logger.info("args: {}".format(self.args))
logger.info("exp value:\n{}".format(self.exp))
# model related init
torch.cuda.set_device(self.local_rank)
model = self.exp.get_model()
logger.info(
"Model Summary: {}".format(get_model_info(model, self.exp.test_size))
)
model.to(self.device)
# solver related init
self.optimizer = self.exp.get_optimizer(self.args.batch_size)
# value of epoch will be set in `resume_train`
model = self.resume_train(model)
# data related init
self.no_aug = self.start_epoch >= self.max_epoch - self.exp.no_aug_epochs
self.train_loader = self.exp.get_data_loader(
batch_size=self.args.batch_size,
is_distributed=self.is_distributed,
no_aug=self.no_aug,
)
logger.info("init prefetcher, this might take one minute or less...")
self.prefetcher = DataPrefetcher(self.train_loader)
# max_iter means iters per epoch
self.max_iter = len(self.train_loader)
self.lr_scheduler = self.exp.get_lr_scheduler(
self.exp.basic_lr_per_img * self.args.batch_size, self.max_iter
)
if self.args.occupy:
occupy_mem(self.local_rank)
if self.is_distributed:
model = DDP(model, device_ids=[self.local_rank], broadcast_buffers=False)
if self.use_model_ema:
self.ema_model = ModelEMA(model, 0.9998)
self.ema_model.updates = self.max_iter * self.start_epoch
self.model = model
self.model.train()
self.evaluator = self.exp.get_evaluator(
batch_size=self.args.batch_size, is_distributed=self.is_distributed
)
# Tensorboard logger
if self.rank == 0:
self.tblogger = SummaryWriter(self.file_name)
logger.info("Training start...")
#logger.info("\n{}".format(model))
def after_train(self):
logger.info(
"Training of experiment is done and the best AP is {:.2f}".format(
self.best_ap * 100
)
)
def before_epoch(self):
logger.info("---> start train epoch{}".format(self.epoch + 1))
if self.epoch + 1 == self.max_epoch - self.exp.no_aug_epochs or self.no_aug:
logger.info("--->No mosaic aug now!")
self.train_loader.close_mosaic()
logger.info("--->Add additional L1 loss now!")
if self.is_distributed:
self.model.module.head.use_l1 = True
else:
self.model.head.use_l1 = True
self.exp.eval_interval = 1
if not self.no_aug:
self.save_ckpt(ckpt_name="last_mosaic_epoch")
def after_epoch(self):
if self.use_model_ema:
self.ema_model.update_attr(self.model)
self.save_ckpt(ckpt_name="latest")
if (self.epoch + 1) % self.exp.eval_interval == 0:
all_reduce_norm(self.model)
self.evaluate_and_save_model()
def before_iter(self):
pass
def after_iter(self):
"""
`after_iter` contains two parts of logic:
* log information
* reset setting of resize
"""
# log needed information
if (self.iter + 1) % self.exp.print_interval == 0:
# TODO check ETA logic
left_iters = self.max_iter * self.max_epoch - (self.progress_in_iter + 1)
eta_seconds = self.meter["iter_time"].global_avg * left_iters
eta_str = "ETA: {}".format(datetime.timedelta(seconds=int(eta_seconds)))
progress_str = "epoch: {}/{}, iter: {}/{}".format(
self.epoch + 1, self.max_epoch, self.iter + 1, self.max_iter
)
loss_meter = self.meter.get_filtered_meter("loss")
loss_str = ", ".join(
["{}: {:.3f}".format(k, v.latest) for k, v in loss_meter.items()]
)
time_meter = self.meter.get_filtered_meter("time")
time_str = ", ".join(
["{}: {:.3f}s".format(k, v.avg) for k, v in time_meter.items()]
)
logger.info(
"{}, mem: {:.0f}Mb, {}, {}, lr: {:.3e}".format(
progress_str,
gpu_mem_usage(),
time_str,
loss_str,
self.meter["lr"].latest,
)
+ (", size: {:d}, {}".format(self.input_size[0], eta_str))
)
self.meter.clear_meters()
# random resizing
if self.exp.random_size is not None and (self.progress_in_iter + 1) % 10 == 0:
self.input_size = self.exp.random_resize(
self.train_loader, self.epoch, self.rank, self.is_distributed
)
@property
def progress_in_iter(self):
return self.epoch * self.max_iter + self.iter
def resume_train(self, model):
if self.args.resume:
logger.info("resume training")
if self.args.ckpt is None:
ckpt_file = os.path.join(self.file_name, "latest" + "_ckpt.pth.tar")
else:
ckpt_file = self.args.ckpt
ckpt = torch.load(ckpt_file, map_location=self.device)
# resume the model/optimizer state dict
model.load_state_dict(ckpt["model"])
self.optimizer.load_state_dict(ckpt["optimizer"])
start_epoch = (
self.args.start_epoch - 1
if self.args.start_epoch is not None
else ckpt["start_epoch"]
)
self.start_epoch = start_epoch
logger.info(
"loaded checkpoint '{}' (epoch {})".format(
self.args.resume, self.start_epoch
)
) # noqa
else:
if self.args.ckpt is not None:
logger.info("loading checkpoint for fine tuning")
ckpt_file = self.args.ckpt
ckpt = torch.load(ckpt_file, map_location=self.device)["model"]
model = load_ckpt(model, ckpt)
self.start_epoch = 0
return model
def evaluate_and_save_model(self):
evalmodel = self.ema_model.ema if self.use_model_ema else self.model
ap50_95, ap50, summary = self.exp.eval(
evalmodel, self.evaluator, self.is_distributed
)
self.model.train()
if self.rank == 0:
self.tblogger.add_scalar("val/COCOAP50", ap50, self.epoch + 1)
self.tblogger.add_scalar("val/COCOAP50_95", ap50_95, self.epoch + 1)
logger.info("\n" + summary)
synchronize()
#self.best_ap = max(self.best_ap, ap50_95)
self.save_ckpt("last_epoch", ap50 > self.best_ap)
self.best_ap = max(self.best_ap, ap50)
def save_ckpt(self, ckpt_name, update_best_ckpt=False):
if self.rank == 0:
save_model = self.ema_model.ema if self.use_model_ema else self.model
logger.info("Save weights to {}".format(self.file_name))
ckpt_state = {
"start_epoch": self.epoch + 1,
"model": save_model.state_dict(),
"optimizer": self.optimizer.state_dict(),
}
save_checkpoint(
ckpt_state,
update_best_ckpt,
self.file_name,
ckpt_name,
)
|