Spaces:
Runtime error
Runtime error
File size: 5,589 Bytes
7734d5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import numpy as np
import os
import glob
import motmetrics as mm
from yolox.evaluators.evaluation import Evaluator
def mkdir_if_missing(d):
if not os.path.exists(d):
os.makedirs(d)
def eval_mota(data_root, txt_path):
accs = []
seqs = sorted([s for s in os.listdir(data_root) if s.endswith('FRCNN')])
#seqs = sorted([s for s in os.listdir(data_root)])
for seq in seqs:
video_out_path = os.path.join(txt_path, seq + '.txt')
evaluator = Evaluator(data_root, seq, 'mot')
accs.append(evaluator.eval_file(video_out_path))
metrics = mm.metrics.motchallenge_metrics
mh = mm.metrics.create()
summary = Evaluator.get_summary(accs, seqs, metrics)
strsummary = mm.io.render_summary(
summary,
formatters=mh.formatters,
namemap=mm.io.motchallenge_metric_names
)
print(strsummary)
def get_mota(data_root, txt_path):
accs = []
seqs = sorted([s for s in os.listdir(data_root) if s.endswith('FRCNN')])
#seqs = sorted([s for s in os.listdir(data_root)])
for seq in seqs:
video_out_path = os.path.join(txt_path, seq + '.txt')
evaluator = Evaluator(data_root, seq, 'mot')
accs.append(evaluator.eval_file(video_out_path))
metrics = mm.metrics.motchallenge_metrics
mh = mm.metrics.create()
summary = Evaluator.get_summary(accs, seqs, metrics)
strsummary = mm.io.render_summary(
summary,
formatters=mh.formatters,
namemap=mm.io.motchallenge_metric_names
)
mota = float(strsummary.split(' ')[-6][:-1])
return mota
def write_results_score(filename, results):
save_format = '{frame},{id},{x1},{y1},{w},{h},{s},-1,-1,-1\n'
with open(filename, 'w') as f:
for i in range(results.shape[0]):
frame_data = results[i]
frame_id = int(frame_data[0])
track_id = int(frame_data[1])
x1, y1, w, h = frame_data[2:6]
score = frame_data[6]
line = save_format.format(frame=frame_id, id=track_id, x1=x1, y1=y1, w=w, h=h, s=-1)
f.write(line)
def dti(txt_path, save_path, n_min=25, n_dti=20):
seq_txts = sorted(glob.glob(os.path.join(txt_path, '*.txt')))
for seq_txt in seq_txts:
seq_name = seq_txt.split('/')[-1]
seq_data = np.loadtxt(seq_txt, dtype=np.float64, delimiter=',')
min_id = int(np.min(seq_data[:, 1]))
max_id = int(np.max(seq_data[:, 1]))
seq_results = np.zeros((1, 10), dtype=np.float64)
for track_id in range(min_id, max_id + 1):
index = (seq_data[:, 1] == track_id)
tracklet = seq_data[index]
tracklet_dti = tracklet
if tracklet.shape[0] == 0:
continue
n_frame = tracklet.shape[0]
n_conf = np.sum(tracklet[:, 6] > 0.5)
if n_frame > n_min:
frames = tracklet[:, 0]
frames_dti = {}
for i in range(0, n_frame):
right_frame = frames[i]
if i > 0:
left_frame = frames[i - 1]
else:
left_frame = frames[i]
# disconnected track interpolation
if 1 < right_frame - left_frame < n_dti:
num_bi = int(right_frame - left_frame - 1)
right_bbox = tracklet[i, 2:6]
left_bbox = tracklet[i - 1, 2:6]
for j in range(1, num_bi + 1):
curr_frame = j + left_frame
curr_bbox = (curr_frame - left_frame) * (right_bbox - left_bbox) / \
(right_frame - left_frame) + left_bbox
frames_dti[curr_frame] = curr_bbox
num_dti = len(frames_dti.keys())
if num_dti > 0:
data_dti = np.zeros((num_dti, 10), dtype=np.float64)
for n in range(num_dti):
data_dti[n, 0] = list(frames_dti.keys())[n]
data_dti[n, 1] = track_id
data_dti[n, 2:6] = frames_dti[list(frames_dti.keys())[n]]
data_dti[n, 6:] = [1, -1, -1, -1]
tracklet_dti = np.vstack((tracklet, data_dti))
seq_results = np.vstack((seq_results, tracklet_dti))
save_seq_txt = os.path.join(save_path, seq_name)
seq_results = seq_results[1:]
seq_results = seq_results[seq_results[:, 0].argsort()]
write_results_score(save_seq_txt, seq_results)
if __name__ == '__main__':
data_root = '/opt/tiger/demo/ByteTrack/datasets/mot/test'
txt_path = '/opt/tiger/demo/ByteTrack/YOLOX_outputs/yolox_x_mix_det/track_results'
save_path = '/opt/tiger/demo/ByteTrack/YOLOX_outputs/yolox_x_mix_det/track_results_dti'
mkdir_if_missing(save_path)
dti(txt_path, save_path, n_min=5, n_dti=20)
print('Before DTI: ')
eval_mota(data_root, txt_path)
print('After DTI:')
eval_mota(data_root, save_path)
'''
mota_best = 0.0
best_n_min = 0
best_n_dti = 0
for n_min in range(5, 50, 5):
for n_dti in range(5, 30, 5):
dti(txt_path, save_path, n_min, n_dti)
mota = get_mota(data_root, save_path)
if mota > mota_best:
mota_best = mota
best_n_min = n_min
best_n_dti = n_dti
print(mota_best, best_n_min, best_n_dti)
print(mota_best, best_n_min, best_n_dti)
'''
|