Spaces:
Runtime error
Runtime error
File size: 8,905 Bytes
7734d5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import numpy as np
from sklearn.utils.linear_assignment_ import linear_assignment
# from numba import jit
import copy
class Tracker(object):
def __init__(self, opt):
self.opt = opt
self.reset()
def init_track(self, results):
for item in results:
if item['score'] > self.opt.new_thresh:
self.id_count += 1
# active and age are never used in the paper
item['active'] = 1
item['age'] = 1
item['tracking_id'] = self.id_count
if not ('ct' in item):
bbox = item['bbox']
item['ct'] = [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2]
self.tracks.append(item)
def reset(self):
self.id_count = 0
self.tracks = []
def step(self, results_with_low, public_det=None):
results = [item for item in results_with_low if item['score'] >= self.opt.track_thresh]
# first association
N = len(results)
M = len(self.tracks)
dets = np.array(
[det['ct'] + det['tracking'] for det in results], np.float32) # N x 2
track_size = np.array([((track['bbox'][2] - track['bbox'][0]) * \
(track['bbox'][3] - track['bbox'][1])) \
for track in self.tracks], np.float32) # M
track_cat = np.array([track['class'] for track in self.tracks], np.int32) # M
item_size = np.array([((item['bbox'][2] - item['bbox'][0]) * \
(item['bbox'][3] - item['bbox'][1])) \
for item in results], np.float32) # N
item_cat = np.array([item['class'] for item in results], np.int32) # N
tracks = np.array(
[pre_det['ct'] for pre_det in self.tracks], np.float32) # M x 2
dist = (((tracks.reshape(1, -1, 2) - \
dets.reshape(-1, 1, 2)) ** 2).sum(axis=2)) # N x M
invalid = ((dist > track_size.reshape(1, M)) + \
(dist > item_size.reshape(N, 1)) + \
(item_cat.reshape(N, 1) != track_cat.reshape(1, M))) > 0
dist = dist + invalid * 1e18
if self.opt.hungarian:
assert not self.opt.hungarian, 'we only verify centertrack with greedy_assignment'
item_score = np.array([item['score'] for item in results], np.float32) # N
dist[dist > 1e18] = 1e18
matched_indices = linear_assignment(dist)
else:
matched_indices = greedy_assignment(copy.deepcopy(dist))
unmatched_dets = [d for d in range(dets.shape[0]) \
if not (d in matched_indices[:, 0])]
unmatched_tracks = [d for d in range(tracks.shape[0]) \
if not (d in matched_indices[:, 1])]
if self.opt.hungarian:
assert not self.opt.hungarian, 'we only verify centertrack with greedy_assignment'
matches = []
for m in matched_indices:
if dist[m[0], m[1]] > 1e16:
unmatched_dets.append(m[0])
unmatched_tracks.append(m[1])
else:
matches.append(m)
matches = np.array(matches).reshape(-1, 2)
else:
matches = matched_indices
ret = []
for m in matches:
track = results[m[0]]
track['tracking_id'] = self.tracks[m[1]]['tracking_id']
track['age'] = 1
track['active'] = self.tracks[m[1]]['active'] + 1
ret.append(track)
if self.opt.public_det and len(unmatched_dets) > 0:
assert not self.opt.public_det, 'we only verify centertrack with private detection'
# Public detection: only create tracks from provided detections
pub_dets = np.array([d['ct'] for d in public_det], np.float32)
dist3 = ((dets.reshape(-1, 1, 2) - pub_dets.reshape(1, -1, 2)) ** 2).sum(
axis=2)
matched_dets = [d for d in range(dets.shape[0]) \
if not (d in unmatched_dets)]
dist3[matched_dets] = 1e18
for j in range(len(pub_dets)):
i = dist3[:, j].argmin()
if dist3[i, j] < item_size[i]:
dist3[i, :] = 1e18
track = results[i]
if track['score'] > self.opt.new_thresh:
self.id_count += 1
track['tracking_id'] = self.id_count
track['age'] = 1
track['active'] = 1
ret.append(track)
else:
# Private detection: create tracks for all un-matched detections
for i in unmatched_dets:
track = results[i]
if track['score'] > self.opt.new_thresh:
self.id_count += 1
track['tracking_id'] = self.id_count
track['age'] = 1
track['active'] = 1
ret.append(track)
# second association
results_second = [item for item in results_with_low if item['score'] < self.opt.track_thresh]
self_tracks_second = [self.tracks[i] for i in unmatched_tracks if self.tracks[i]['active'] > 0]
second2original = [i for i in unmatched_tracks if self.tracks[i]['active'] > 0]
N = len(results_second)
M = len(self_tracks_second)
if N > 0 and M > 0:
dets = np.array(
[det['ct'] + det['tracking'] for det in results_second], np.float32) # N x 2
track_size = np.array([((track['bbox'][2] - track['bbox'][0]) * \
(track['bbox'][3] - track['bbox'][1])) \
for track in self_tracks_second], np.float32) # M
track_cat = np.array([track['class'] for track in self_tracks_second], np.int32) # M
item_size = np.array([((item['bbox'][2] - item['bbox'][0]) * \
(item['bbox'][3] - item['bbox'][1])) \
for item in results_second], np.float32) # N
item_cat = np.array([item['class'] for item in results_second], np.int32) # N
tracks_second = np.array(
[pre_det['ct'] for pre_det in self_tracks_second], np.float32) # M x 2
dist = (((tracks_second.reshape(1, -1, 2) - \
dets.reshape(-1, 1, 2)) ** 2).sum(axis=2)) # N x M
invalid = ((dist > track_size.reshape(1, M)) + \
(dist > item_size.reshape(N, 1)) + \
(item_cat.reshape(N, 1) != track_cat.reshape(1, M))) > 0
dist = dist + invalid * 1e18
matched_indices_second = greedy_assignment(copy.deepcopy(dist), 1e8)
unmatched_tracks_second = [d for d in range(tracks_second.shape[0]) \
if not (d in matched_indices_second[:, 1])]
matches_second = matched_indices_second
for m in matches_second:
track = results_second[m[0]]
track['tracking_id'] = self_tracks_second[m[1]]['tracking_id']
track['age'] = 1
track['active'] = self_tracks_second[m[1]]['active'] + 1
ret.append(track)
unmatched_tracks = [second2original[i] for i in unmatched_tracks_second] + \
[i for i in unmatched_tracks if self.tracks[i]['active'] == 0]
#. for debug
# unmatched_tracks = [i for i in unmatched_tracks if self.tracks[i]['active'] > 0] + \
# [i for i in unmatched_tracks if self.tracks[i]['active'] == 0]
for i in unmatched_tracks:
track = self.tracks[i]
if track['age'] < self.opt.max_age:
track['age'] += 1
track['active'] = 0
bbox = track['bbox']
ct = track['ct']
v = [0, 0]
track['bbox'] = [
bbox[0] + v[0], bbox[1] + v[1],
bbox[2] + v[0], bbox[3] + v[1]]
track['ct'] = [ct[0] + v[0], ct[1] + v[1]]
ret.append(track)
self.tracks = ret
return ret
def greedy_assignment(dist, thresh=1e16):
matched_indices = []
if dist.shape[1] == 0:
return np.array(matched_indices, np.int32).reshape(-1, 2)
for i in range(dist.shape[0]):
j = dist[i].argmin()
if dist[i][j] < thresh:
dist[:, j] = 1e18
matched_indices.append([i, j])
return np.array(matched_indices, np.int32).reshape(-1, 2)
|