Spaces:
Runtime error
Runtime error
File size: 10,386 Bytes
7734d5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
from loguru import logger
import torch
import torch.backends.cudnn as cudnn
from torch.nn.parallel import DistributedDataParallel as DDP
from yolox.core import launch
from yolox.exp import get_exp
from yolox.utils import configure_nccl, fuse_model, get_local_rank, get_model_info, setup_logger
from yolox.evaluators import MOTEvaluator
import argparse
import os
import random
import warnings
import glob
import motmetrics as mm
from collections import OrderedDict
from pathlib import Path
def make_parser():
parser = argparse.ArgumentParser("YOLOX Eval")
parser.add_argument("-expn", "--experiment-name", type=str, default=None)
parser.add_argument("-n", "--name", type=str, default=None, help="model name")
# distributed
parser.add_argument(
"--dist-backend", default="nccl", type=str, help="distributed backend"
)
parser.add_argument(
"--dist-url",
default=None,
type=str,
help="url used to set up distributed training",
)
parser.add_argument("-b", "--batch-size", type=int, default=64, help="batch size")
parser.add_argument(
"-d", "--devices", default=None, type=int, help="device for training"
)
parser.add_argument(
"--local_rank", default=0, type=int, help="local rank for dist training"
)
parser.add_argument(
"--num_machines", default=1, type=int, help="num of node for training"
)
parser.add_argument(
"--machine_rank", default=0, type=int, help="node rank for multi-node training"
)
parser.add_argument(
"-f",
"--exp_file",
default=None,
type=str,
help="pls input your expriment description file",
)
parser.add_argument(
"--fp16",
dest="fp16",
default=False,
action="store_true",
help="Adopting mix precision evaluating.",
)
parser.add_argument(
"--fuse",
dest="fuse",
default=False,
action="store_true",
help="Fuse conv and bn for testing.",
)
parser.add_argument(
"--trt",
dest="trt",
default=False,
action="store_true",
help="Using TensorRT model for testing.",
)
parser.add_argument(
"--test",
dest="test",
default=False,
action="store_true",
help="Evaluating on test-dev set.",
)
parser.add_argument(
"--speed",
dest="speed",
default=False,
action="store_true",
help="speed test only.",
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
# det args
parser.add_argument("-c", "--ckpt", default=None, type=str, help="ckpt for eval")
parser.add_argument("--conf", default=0.1, type=float, help="test conf")
parser.add_argument("--nms", default=0.7, type=float, help="test nms threshold")
parser.add_argument("--tsize", default=None, type=int, help="test img size")
parser.add_argument("--seed", default=None, type=int, help="eval seed")
# tracking args
parser.add_argument("--track_thresh", type=float, default=0.6, help="tracking confidence threshold")
parser.add_argument("--track_buffer", type=int, default=30, help="the frames for keep lost tracks")
parser.add_argument("--match_thresh", type=int, default=0.9, help="matching threshold for tracking")
parser.add_argument('--min-box-area', type=float, default=100, help='filter out tiny boxes')
# deepsort args
parser.add_argument("--model_folder", type=str, default='pretrained/googlenet_part8_all_xavier_ckpt_56.h5', help="reid model folder")
return parser
def compare_dataframes(gts, ts):
accs = []
names = []
for k, tsacc in ts.items():
if k in gts:
logger.info('Comparing {}...'.format(k))
accs.append(mm.utils.compare_to_groundtruth(gts[k], tsacc, 'iou', distth=0.5))
names.append(k)
else:
logger.warning('No ground truth for {}, skipping.'.format(k))
return accs, names
@logger.catch
def main(exp, args, num_gpu):
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn(
"You have chosen to seed testing. This will turn on the CUDNN deterministic setting, "
)
is_distributed = num_gpu > 1
# set environment variables for distributed training
cudnn.benchmark = True
rank = args.local_rank
# rank = get_local_rank()
file_name = os.path.join(exp.output_dir, args.experiment_name)
if rank == 0:
os.makedirs(file_name, exist_ok=True)
results_folder = os.path.join(file_name, "track_results_motdt")
os.makedirs(results_folder, exist_ok=True)
model_folder = args.model_folder
setup_logger(file_name, distributed_rank=rank, filename="val_log.txt", mode="a")
logger.info("Args: {}".format(args))
if args.conf is not None:
exp.test_conf = args.conf
if args.nms is not None:
exp.nmsthre = args.nms
if args.tsize is not None:
exp.test_size = (args.tsize, args.tsize)
model = exp.get_model()
logger.info("Model Summary: {}".format(get_model_info(model, exp.test_size)))
#logger.info("Model Structure:\n{}".format(str(model)))
#evaluator = exp.get_evaluator(args.batch_size, is_distributed, args.test)
val_loader = exp.get_eval_loader(args.batch_size, is_distributed, args.test)
evaluator = MOTEvaluator(
args=args,
dataloader=val_loader,
img_size=exp.test_size,
confthre=exp.test_conf,
nmsthre=exp.nmsthre,
num_classes=exp.num_classes,
)
torch.cuda.set_device(rank)
model.cuda(rank)
model.eval()
if not args.speed and not args.trt:
if args.ckpt is None:
ckpt_file = os.path.join(file_name, "best_ckpt.pth.tar")
else:
ckpt_file = args.ckpt
logger.info("loading checkpoint")
loc = "cuda:{}".format(rank)
ckpt = torch.load(ckpt_file, map_location=loc)
# load the model state dict
model.load_state_dict(ckpt["model"])
logger.info("loaded checkpoint done.")
if is_distributed:
model = DDP(model, device_ids=[rank])
if args.fuse:
logger.info("\tFusing model...")
model = fuse_model(model)
if args.trt:
assert (
not args.fuse and not is_distributed and args.batch_size == 1
), "TensorRT model is not support model fusing and distributed inferencing!"
trt_file = os.path.join(file_name, "model_trt.pth")
assert os.path.exists(
trt_file
), "TensorRT model is not found!\n Run tools/trt.py first!"
model.head.decode_in_inference = False
decoder = model.head.decode_outputs
else:
trt_file = None
decoder = None
# start evaluate
*_, summary = evaluator.evaluate_motdt(
model, is_distributed, args.fp16, trt_file, decoder, exp.test_size, results_folder, model_folder
)
logger.info("\n" + summary)
# evaluate MOTA
mm.lap.default_solver = 'lap'
gt_type = '_val_half'
#gt_type = ''
print('gt_type', gt_type)
gtfiles = glob.glob(
os.path.join('datasets/mot/train', '*/gt/gt{}.txt'.format(gt_type)))
print('gt_files', gtfiles)
tsfiles = [f for f in glob.glob(os.path.join(results_folder, '*.txt')) if not os.path.basename(f).startswith('eval')]
logger.info('Found {} groundtruths and {} test files.'.format(len(gtfiles), len(tsfiles)))
logger.info('Available LAP solvers {}'.format(mm.lap.available_solvers))
logger.info('Default LAP solver \'{}\''.format(mm.lap.default_solver))
logger.info('Loading files.')
gt = OrderedDict([(Path(f).parts[-3], mm.io.loadtxt(f, fmt='mot15-2D', min_confidence=1)) for f in gtfiles])
ts = OrderedDict([(os.path.splitext(Path(f).parts[-1])[0], mm.io.loadtxt(f, fmt='mot15-2D', min_confidence=-1)) for f in tsfiles])
mh = mm.metrics.create()
accs, names = compare_dataframes(gt, ts)
logger.info('Running metrics')
metrics = ['recall', 'precision', 'num_unique_objects', 'mostly_tracked',
'partially_tracked', 'mostly_lost', 'num_false_positives', 'num_misses',
'num_switches', 'num_fragmentations', 'mota', 'motp', 'num_objects']
summary = mh.compute_many(accs, names=names, metrics=metrics, generate_overall=True)
# summary = mh.compute_many(accs, names=names, metrics=mm.metrics.motchallenge_metrics, generate_overall=True)
# print(mm.io.render_summary(
# summary, formatters=mh.formatters,
# namemap=mm.io.motchallenge_metric_names))
div_dict = {
'num_objects': ['num_false_positives', 'num_misses', 'num_switches', 'num_fragmentations'],
'num_unique_objects': ['mostly_tracked', 'partially_tracked', 'mostly_lost']}
for divisor in div_dict:
for divided in div_dict[divisor]:
summary[divided] = (summary[divided] / summary[divisor])
fmt = mh.formatters
change_fmt_list = ['num_false_positives', 'num_misses', 'num_switches', 'num_fragmentations', 'mostly_tracked',
'partially_tracked', 'mostly_lost']
for k in change_fmt_list:
fmt[k] = fmt['mota']
print(mm.io.render_summary(summary, formatters=fmt, namemap=mm.io.motchallenge_metric_names))
metrics = mm.metrics.motchallenge_metrics + ['num_objects']
summary = mh.compute_many(accs, names=names, metrics=metrics, generate_overall=True)
print(mm.io.render_summary(summary, formatters=mh.formatters, namemap=mm.io.motchallenge_metric_names))
logger.info('Completed')
if __name__ == "__main__":
args = make_parser().parse_args()
exp = get_exp(args.exp_file, args.name)
exp.merge(args.opts)
if not args.experiment_name:
args.experiment_name = exp.exp_name
num_gpu = torch.cuda.device_count() if args.devices is None else args.devices
assert num_gpu <= torch.cuda.device_count()
launch(
main,
num_gpu,
args.num_machines,
args.machine_rank,
backend=args.dist_backend,
dist_url=args.dist_url,
args=(exp, args, num_gpu),
)
|