Spaces:
Runtime error
Runtime error
File size: 14,603 Bytes
7734d5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import numpy as np
from sklearn.utils.linear_assignment_ import linear_assignment
import copy
from sklearn.metrics.pairwise import cosine_similarity as cosine
class Tracker(object):
def __init__(self, opt):
self.opt = opt
self.reset()
self.nID = 10000
self.alpha = 0.1
def init_track(self, results):
for item in results:
if item['score'] > self.opt.new_thresh:
self.id_count += 1
# active and age are never used in the paper
item['active'] = 1
item['age'] = 1
item['tracking_id'] = self.id_count
if not ('ct' in item):
bbox = item['bbox']
item['ct'] = [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2]
self.tracks.append(item)
self.nID = 10000
self.embedding_bank = np.zeros((self.nID, 128))
self.cat_bank = np.zeros((self.nID), dtype=np.int)
def reset(self):
self.id_count = 0
self.nID = 10000
self.tracks = []
self.embedding_bank = np.zeros((self.nID, 128))
self.cat_bank = np.zeros((self.nID), dtype=np.int)
self.tracklet_ages = np.zeros((self.nID), dtype=np.int)
self.alive = []
def step(self, results_with_low, public_det=None):
results = [item for item in results_with_low if item['score'] >= self.opt.track_thresh]
# first association
N = len(results)
M = len(self.tracks)
self.alive = []
track_boxes = np.array([[track['bbox'][0], track['bbox'][1],
track['bbox'][2], track['bbox'][3]] for track in self.tracks], np.float32) # M x 4
det_boxes = np.array([[item['bbox'][0], item['bbox'][1],
item['bbox'][2], item['bbox'][3]] for item in results], np.float32) # N x 4
box_ious = self.bbox_overlaps_py(det_boxes, track_boxes)
dets = np.array(
[det['ct'] + det['tracking'] for det in results], np.float32) # N x 2
track_size = np.array([((track['bbox'][2] - track['bbox'][0]) * \
(track['bbox'][3] - track['bbox'][1])) \
for track in self.tracks], np.float32) # M
track_cat = np.array([track['class'] for track in self.tracks], np.int32) # M
item_size = np.array([((item['bbox'][2] - item['bbox'][0]) * \
(item['bbox'][3] - item['bbox'][1])) \
for item in results], np.float32) # N
item_cat = np.array([item['class'] for item in results], np.int32) # N
tracks = np.array(
[pre_det['ct'] for pre_det in self.tracks], np.float32) # M x 2
dist = (((tracks.reshape(1, -1, 2) - \
dets.reshape(-1, 1, 2)) ** 2).sum(axis=2)) # N x M
if self.opt.dataset == 'youtube_vis':
invalid = ((dist > track_size.reshape(1, M)) + \
(dist > item_size.reshape(N, 1)) + (box_ious < self.opt.overlap_thresh)) > 0
else:
invalid = ((dist > track_size.reshape(1, M)) + \
(dist > item_size.reshape(N, 1)) + \
(item_cat.reshape(N, 1) != track_cat.reshape(1, M)) + (box_ious < self.opt.overlap_thresh)) > 0
dist = dist + invalid * 1e18
if self.opt.hungarian:
item_score = np.array([item['score'] for item in results], np.float32) # N
dist[dist > 1e18] = 1e18
matched_indices = linear_assignment(dist)
else:
matched_indices = greedy_assignment(copy.deepcopy(dist))
unmatched_dets = [d for d in range(dets.shape[0]) \
if not (d in matched_indices[:, 0])]
unmatched_tracks = [d for d in range(tracks.shape[0]) \
if not (d in matched_indices[:, 1])]
if self.opt.hungarian:
matches = []
for m in matched_indices:
if dist[m[0], m[1]] > 1e16:
unmatched_dets.append(m[0])
unmatched_tracks.append(m[1])
else:
matches.append(m)
matches = np.array(matches).reshape(-1, 2)
else:
matches = matched_indices
ret = []
for m in matches:
track = results[m[0]]
track['tracking_id'] = self.tracks[m[1]]['tracking_id']
track['age'] = 1
track['active'] = self.tracks[m[1]]['active'] + 1
if 'embedding' in track:
self.alive.append(track['tracking_id'])
self.embedding_bank[self.tracks[m[1]]['tracking_id'] - 1, :] = self.alpha * track['embedding'] \
+ (1 - self.alpha) * self.embedding_bank[
self.tracks[m[1]][
'tracking_id'] - 1,
:]
self.cat_bank[self.tracks[m[1]]['tracking_id'] - 1] = track['class']
ret.append(track)
if self.opt.public_det and len(unmatched_dets) > 0:
# Public detection: only create tracks from provided detections
pub_dets = np.array([d['ct'] for d in public_det], np.float32)
dist3 = ((dets.reshape(-1, 1, 2) - pub_dets.reshape(1, -1, 2)) ** 2).sum(
axis=2)
matched_dets = [d for d in range(dets.shape[0]) \
if not (d in unmatched_dets)]
dist3[matched_dets] = 1e18
for j in range(len(pub_dets)):
i = dist3[:, j].argmin()
if dist3[i, j] < item_size[i]:
dist3[i, :] = 1e18
track = results[i]
if track['score'] > self.opt.new_thresh:
self.id_count += 1
track['tracking_id'] = self.id_count
track['age'] = 1
track['active'] = 1
ret.append(track)
else:
# Private detection: create tracks for all un-matched detections
for i in unmatched_dets:
track = results[i]
if track['score'] > self.opt.new_thresh:
if 'embedding' in track:
max_id, max_cos = self.get_similarity(track['embedding'], False, track['class'])
if max_cos >= 0.3 and self.tracklet_ages[max_id - 1] < self.opt.window_size:
track['tracking_id'] = max_id
track['age'] = 1
track['active'] = 1
self.embedding_bank[track['tracking_id'] - 1, :] = self.alpha * track['embedding'] \
+ (1 - self.alpha) * self.embedding_bank[track['tracking_id'] - 1,:]
else:
self.id_count += 1
track['tracking_id'] = self.id_count
track['age'] = 1
track['active'] = 1
self.embedding_bank[self.id_count - 1, :] = track['embedding']
self.cat_bank[self.id_count - 1] = track['class']
self.alive.append(track['tracking_id'])
ret.append(track)
else:
self.id_count += 1
track['tracking_id'] = self.id_count
track['age'] = 1
track['active'] = 1
ret.append(track)
self.tracklet_ages[:self.id_count] = self.tracklet_ages[:self.id_count] + 1
for track in ret:
self.tracklet_ages[track['tracking_id'] - 1] = 1
# second association
results_second = [item for item in results_with_low if item['score'] < self.opt.track_thresh]
self_tracks_second = [self.tracks[i] for i in unmatched_tracks if self.tracks[i]['active'] > 0]
second2original = [i for i in unmatched_tracks if self.tracks[i]['active'] > 0]
N = len(results_second)
M = len(self_tracks_second)
if N > 0 and M > 0:
track_boxes_second = np.array([[track['bbox'][0], track['bbox'][1],
track['bbox'][2], track['bbox'][3]] for track in self_tracks_second], np.float32) # M x 4
det_boxes_second = np.array([[item['bbox'][0], item['bbox'][1],
item['bbox'][2], item['bbox'][3]] for item in results_second], np.float32) # N x 4
box_ious_second = self.bbox_overlaps_py(det_boxes_second, track_boxes_second)
dets = np.array(
[det['ct'] + det['tracking'] for det in results_second], np.float32) # N x 2
track_size = np.array([((track['bbox'][2] - track['bbox'][0]) * \
(track['bbox'][3] - track['bbox'][1])) \
for track in self_tracks_second], np.float32) # M
track_cat = np.array([track['class'] for track in self_tracks_second], np.int32) # M
item_size = np.array([((item['bbox'][2] - item['bbox'][0]) * \
(item['bbox'][3] - item['bbox'][1])) \
for item in results_second], np.float32) # N
item_cat = np.array([item['class'] for item in results_second], np.int32) # N
tracks_second = np.array(
[pre_det['ct'] for pre_det in self_tracks_second], np.float32) # M x 2
dist = (((tracks_second.reshape(1, -1, 2) - \
dets.reshape(-1, 1, 2)) ** 2).sum(axis=2)) # N x M
invalid = ((dist > track_size.reshape(1, M)) + \
(dist > item_size.reshape(N, 1)) + \
(item_cat.reshape(N, 1) != track_cat.reshape(1, M)) + (box_ious_second < 0.3)) > 0
dist = dist + invalid * 1e18
matched_indices_second = greedy_assignment(copy.deepcopy(dist), 1e8)
unmatched_tracks_second = [d for d in range(tracks_second.shape[0]) \
if not (d in matched_indices_second[:, 1])]
matches_second = matched_indices_second
for m in matches_second:
track = results_second[m[0]]
track['tracking_id'] = self_tracks_second[m[1]]['tracking_id']
track['age'] = 1
track['active'] = self_tracks_second[m[1]]['active'] + 1
if 'embedding' in track:
self.alive.append(track['tracking_id'])
self.embedding_bank[self_tracks_second[m[1]]['tracking_id'] - 1, :] = self.alpha * track['embedding'] \
+ (1 - self.alpha) * self.embedding_bank[self_tracks_second[m[1]]['tracking_id'] - 1,:]
self.cat_bank[self_tracks_second[m[1]]['tracking_id'] - 1] = track['class']
ret.append(track)
unmatched_tracks = [second2original[i] for i in unmatched_tracks_second] + \
[i for i in unmatched_tracks if self.tracks[i]['active'] == 0]
# Never used
for i in unmatched_tracks:
track = self.tracks[i]
if track['age'] < self.opt.max_age:
track['age'] += 1
track['active'] = 1 # 0
bbox = track['bbox']
ct = track['ct']
v = [0, 0]
track['bbox'] = [
bbox[0] + v[0], bbox[1] + v[1],
bbox[2] + v[0], bbox[3] + v[1]]
track['ct'] = [ct[0] + v[0], ct[1] + v[1]]
ret.append(track)
for r_ in ret:
del r_['embedding']
self.tracks = ret
return ret
def get_similarity(self, feat, stat, cls):
max_id = -1
max_cos = -1
if stat:
nID = self.id_count
else:
nID = self.id_count
a = feat[None, :]
b = self.embedding_bank[:nID, :]
if len(b) > 0:
alive = np.array(self.alive, dtype=np.int) - 1
cosim = cosine(a, b)
cosim = np.reshape(cosim, newshape=(-1))
cosim[alive] = -2
cosim[nID - 1] = -2
cosim[np.where(self.cat_bank[:nID] != cls)[0]] = -2
max_id = int(np.argmax(cosim) + 1)
max_cos = np.max(cosim)
return max_id, max_cos
def bbox_overlaps_py(self, boxes, query_boxes):
"""
determine overlaps between boxes and query_boxes
:param boxes: n * 4 bounding boxes
:param query_boxes: k * 4 bounding boxes
:return: overlaps: n * k overlaps
"""
n_ = boxes.shape[0]
k_ = query_boxes.shape[0]
overlaps = np.zeros((n_, k_), dtype=np.float)
for k in range(k_):
query_box_area = (query_boxes[k, 2] - query_boxes[k, 0] + 1) * (query_boxes[k, 3] - query_boxes[k, 1] + 1)
for n in range(n_):
iw = min(boxes[n, 2], query_boxes[k, 2]) - max(boxes[n, 0], query_boxes[k, 0]) + 1
if iw > 0:
ih = min(boxes[n, 3], query_boxes[k, 3]) - max(boxes[n, 1], query_boxes[k, 1]) + 1
if ih > 0:
box_area = (boxes[n, 2] - boxes[n, 0] + 1) * (boxes[n, 3] - boxes[n, 1] + 1)
all_area = float(box_area + query_box_area - iw * ih)
overlaps[n, k] = iw * ih / all_area
return overlaps
def greedy_assignment(dist, thresh=1e16):
matched_indices = []
if dist.shape[1] == 0:
return np.array(matched_indices, np.int32).reshape(-1, 2)
for i in range(dist.shape[0]):
j = dist[i].argmin()
if dist[i][j] < thresh:
dist[:, j] = 1e18
matched_indices.append([i, j])
return np.array(matched_indices, np.int32).reshape(-1, 2)
|