File size: 7,548 Bytes
7734d5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import lap
import numpy as np
import scipy
from cython_bbox import bbox_overlaps as bbox_ious
from scipy.spatial.distance import cdist

chi2inv95 = {
    1: 3.8415,
    2: 5.9915,
    3: 7.8147,
    4: 9.4877,
    5: 11.070,
    6: 12.592,
    7: 14.067,
    8: 15.507,
    9: 16.919}

def merge_matches(m1, m2, shape):
    O,P,Q = shape
    m1 = np.asarray(m1)
    m2 = np.asarray(m2)

    M1 = scipy.sparse.coo_matrix((np.ones(len(m1)), (m1[:, 0], m1[:, 1])), shape=(O, P))
    M2 = scipy.sparse.coo_matrix((np.ones(len(m2)), (m2[:, 0], m2[:, 1])), shape=(P, Q))

    mask = M1*M2
    match = mask.nonzero()
    match = list(zip(match[0], match[1]))
    unmatched_O = tuple(set(range(O)) - set([i for i, j in match]))
    unmatched_Q = tuple(set(range(Q)) - set([j for i, j in match]))

    return match, unmatched_O, unmatched_Q


def _indices_to_matches(cost_matrix, indices, thresh):
    matched_cost = cost_matrix[tuple(zip(*indices))]
    matched_mask = (matched_cost <= thresh)

    matches = indices[matched_mask]
    unmatched_a = tuple(set(range(cost_matrix.shape[0])) - set(matches[:, 0]))
    unmatched_b = tuple(set(range(cost_matrix.shape[1])) - set(matches[:, 1]))

    return matches, unmatched_a, unmatched_b


def linear_assignment(cost_matrix, thresh):
    if cost_matrix.size == 0:
        return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1]))
    matches, unmatched_a, unmatched_b = [], [], []
    cost, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh)
    for ix, mx in enumerate(x):
        if mx >= 0:
            matches.append([ix, mx])
    unmatched_a = np.where(x < 0)[0]
    unmatched_b = np.where(y < 0)[0]
    matches = np.asarray(matches)
    return matches, unmatched_a, unmatched_b


def ious(atlbrs, btlbrs):
    """
    Compute cost based on IoU
    :type atlbrs: list[tlbr] | np.ndarray
    :type atlbrs: list[tlbr] | np.ndarray

    :rtype ious np.ndarray
    """
    ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float)
    if ious.size == 0:
        return ious

    ious = bbox_ious(
        np.ascontiguousarray(atlbrs, dtype=np.float),
        np.ascontiguousarray(btlbrs, dtype=np.float)
    )

    return ious


def iou_distance(atracks, btracks):
    """
    Compute cost based on IoU
    :type atracks: list[STrack]
    :type btracks: list[STrack]

    :rtype cost_matrix np.ndarray
    """

    if (len(atracks)>0 and isinstance(atracks[0], np.ndarray)) or (len(btracks) > 0 and isinstance(btracks[0], np.ndarray)):
        atlbrs = atracks
        btlbrs = btracks
    else:
        atlbrs = [track.tlbr for track in atracks]
        btlbrs = [track.tlbr for track in btracks]
    _ious = ious(atlbrs, btlbrs)
    cost_matrix = 1 - _ious

    return cost_matrix

def embedding_distance(tracks, detections, metric='cosine'):
    """
    :param tracks: list[STrack]
    :param detections: list[BaseTrack]
    :param metric:
    :return: cost_matrix np.ndarray
    """

    cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float)
    if cost_matrix.size == 0:
        return cost_matrix
    det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float)
    #for i, track in enumerate(tracks):
        #cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric))
    track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float)
    cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric))  # Nomalized features
    return cost_matrix

def embedding_distance2(tracks, detections, metric='cosine'):
    """
    :param tracks: list[STrack]
    :param detections: list[BaseTrack]
    :param metric:
    :return: cost_matrix np.ndarray
    """

    cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float)
    if cost_matrix.size == 0:
        return cost_matrix
    det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float)
    #for i, track in enumerate(tracks):
        #cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric))
    track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float)
    cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric))  # Nomalized features
    track_features = np.asarray([track.features[0] for track in tracks], dtype=np.float)
    cost_matrix2 = np.maximum(0.0, cdist(track_features, det_features, metric))  # Nomalized features
    track_features = np.asarray([track.features[len(track.features)-1] for track in tracks], dtype=np.float)
    cost_matrix3 = np.maximum(0.0, cdist(track_features, det_features, metric))  # Nomalized features
    for row in range(len(cost_matrix)):
        cost_matrix[row] = (cost_matrix[row]+cost_matrix2[row]+cost_matrix3[row])/3
    return cost_matrix


def vis_id_feature_A_distance(tracks, detections, metric='cosine'):
    track_features = []
    det_features = []
    leg1 = len(tracks)
    leg2 = len(detections)
    cost_matrix = np.zeros((leg1, leg2), dtype=np.float)
    cost_matrix_det = np.zeros((leg1, leg2), dtype=np.float)
    cost_matrix_track = np.zeros((leg1, leg2), dtype=np.float)
    det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float)
    track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float)
    if leg2 != 0:
        cost_matrix_det = np.maximum(0.0, cdist(det_features, det_features, metric))
    if leg1 != 0:
        cost_matrix_track = np.maximum(0.0, cdist(track_features, track_features, metric))
    if cost_matrix.size == 0:
        return track_features, det_features, cost_matrix, cost_matrix_det, cost_matrix_track
    cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric))
    if leg1 > 10:
        leg1 = 10
        tracks = tracks[:10]
    if leg2 > 10:
        leg2 = 10
        detections = detections[:10]
    det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float)
    track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float)
    return track_features, det_features, cost_matrix, cost_matrix_det, cost_matrix_track

def gate_cost_matrix(kf, cost_matrix, tracks, detections, only_position=False):
    if cost_matrix.size == 0:
        return cost_matrix
    gating_dim = 2 if only_position else 4
    gating_threshold = chi2inv95[gating_dim]
    measurements = np.asarray([det.to_xyah() for det in detections])
    for row, track in enumerate(tracks):
        gating_distance = kf.gating_distance(
            track.mean, track.covariance, measurements, only_position)
        cost_matrix[row, gating_distance > gating_threshold] = np.inf
    return cost_matrix


def fuse_motion(kf, cost_matrix, tracks, detections, only_position=False, lambda_=0.98):
    if cost_matrix.size == 0:
        return cost_matrix
    gating_dim = 2 if only_position else 4
    gating_threshold = chi2inv95[gating_dim]
    measurements = np.asarray([det.to_xyah() for det in detections])
    for row, track in enumerate(tracks):
        gating_distance = kf.gating_distance(
            track.mean, track.covariance, measurements, only_position, metric='maha')
        cost_matrix[row, gating_distance > gating_threshold] = np.inf
        cost_matrix[row] = lambda_ * cost_matrix[row] + (1 - lambda_) * gating_distance
    return cost_matrix