File size: 8,410 Bytes
7734d5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import cv2
import numpy as np
import torch
from torch.autograd import Variable
import torch.nn.functional as F
import torch.nn as nn
import pickle
import os
from torch.nn.modules import CrossMapLRN2d as SpatialCrossMapLRN
#from torch.legacy.nn import SpatialCrossMapLRN as SpatialCrossMapLRNOld
from torch.autograd import Function, Variable
from torch.nn import Module


def clip_boxes(boxes, im_shape):
    """
    Clip boxes to image boundaries.
    """
    boxes = np.asarray(boxes)
    if boxes.shape[0] == 0:
        return boxes
    boxes = np.copy(boxes)
    # x1 >= 0
    boxes[:, 0::4] = np.maximum(np.minimum(boxes[:, 0::4], im_shape[1] - 1), 0)
    # y1 >= 0
    boxes[:, 1::4] = np.maximum(np.minimum(boxes[:, 1::4], im_shape[0] - 1), 0)
    # x2 < im_shape[1]
    boxes[:, 2::4] = np.maximum(np.minimum(boxes[:, 2::4], im_shape[1] - 1), 0)
    # y2 < im_shape[0]
    boxes[:, 3::4] = np.maximum(np.minimum(boxes[:, 3::4], im_shape[0] - 1), 0)
    return boxes


def load_net(fname, net, prefix='', load_state_dict=False):
    import h5py
    with h5py.File(fname, mode='r') as h5f:
        h5f_is_module = True
        for k in h5f.keys():
            if not str(k).startswith('module.'):
                h5f_is_module = False
                break
        if prefix == '' and not isinstance(net, nn.DataParallel) and h5f_is_module:
            prefix = 'module.'

        for k, v in net.state_dict().items():
            k = prefix + k
            if k in h5f:
                param = torch.from_numpy(np.asarray(h5f[k]))
                if v.size() != param.size():
                    print('Inconsistent shape: {}, {}'.format(v.size(), param.size()))
                else:
                    v.copy_(param)
            else:
                print.warning('No layer: {}'.format(k))

        epoch = h5f.attrs['epoch'] if 'epoch' in h5f.attrs else -1

        if not load_state_dict:
            if 'learning_rates' in h5f.attrs:
                lr = h5f.attrs['learning_rates']
            else:
                lr = h5f.attrs.get('lr', -1)
                lr = np.asarray([lr] if lr > 0 else [], dtype=np.float)

            return epoch, lr

        state_file = fname + '.optimizer_state.pk'
        if os.path.isfile(state_file):
            with open(state_file, 'rb') as f:
                state_dicts = pickle.load(f)
                if not isinstance(state_dicts, list):
                    state_dicts = [state_dicts]
        else:
            state_dicts = None
        return epoch, state_dicts


# class SpatialCrossMapLRNFunc(Function):

#     def __init__(self, size, alpha=1e-4, beta=0.75, k=1):
#         self.size = size
#         self.alpha = alpha
#         self.beta = beta
#         self.k = k

#     def forward(self, input):
#         self.save_for_backward(input)
#         self.lrn = SpatialCrossMapLRNOld(self.size, self.alpha, self.beta, self.k)
#         self.lrn.type(input.type())
#         return self.lrn.forward(input)

#     def backward(self, grad_output):
#         input, = self.saved_tensors
#         return self.lrn.backward(input, grad_output)


# # use this one instead
# class SpatialCrossMapLRN(Module):
#     def __init__(self, size, alpha=1e-4, beta=0.75, k=1):
#         super(SpatialCrossMapLRN, self).__init__()
#         self.size = size
#         self.alpha = alpha
#         self.beta = beta
#         self.k = k

#     def forward(self, input):
#         return SpatialCrossMapLRNFunc(self.size, self.alpha, self.beta, self.k)(input)


class Inception(nn.Module):
    def __init__(self, in_planes, n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes):
        super(Inception, self).__init__()
        # 1x1 conv branch
        self.b1 = nn.Sequential(
            nn.Conv2d(in_planes, n1x1, kernel_size=1),
            nn.ReLU(True),
        )

        # 1x1 conv -> 3x3 conv branch
        self.b2 = nn.Sequential(
            nn.Conv2d(in_planes, n3x3red, kernel_size=1),
            nn.ReLU(True),
            nn.Conv2d(n3x3red, n3x3, kernel_size=3, padding=1),
            nn.ReLU(True),
        )

        # 1x1 conv -> 5x5 conv branch
        self.b3 = nn.Sequential(
            nn.Conv2d(in_planes, n5x5red, kernel_size=1),
            nn.ReLU(True),

            nn.Conv2d(n5x5red, n5x5, kernel_size=5, padding=2),
            nn.ReLU(True),
        )

        # 3x3 pool -> 1x1 conv branch
        self.b4 = nn.Sequential(
            nn.MaxPool2d(3, stride=1, padding=1),

            nn.Conv2d(in_planes, pool_planes, kernel_size=1),
            nn.ReLU(True),
        )

    def forward(self, x):
        y1 = self.b1(x)
        y2 = self.b2(x)
        y3 = self.b3(x)
        y4 = self.b4(x)
        return torch.cat([y1,y2,y3,y4], 1)


class GoogLeNet(nn.Module):

    output_channels = 832

    def __init__(self):
        super(GoogLeNet, self).__init__()
        self.pre_layers = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
            nn.ReLU(True),

            nn.MaxPool2d(3, stride=2, ceil_mode=True),
            SpatialCrossMapLRN(5),

            nn.Conv2d(64, 64, 1),
            nn.ReLU(True),

            nn.Conv2d(64, 192, 3, padding=1),
            nn.ReLU(True),

            SpatialCrossMapLRN(5),
            nn.MaxPool2d(3, stride=2, ceil_mode=True),
        )

        self.a3 = Inception(192,  64,  96, 128, 16, 32, 32)
        self.b3 = Inception(256, 128, 128, 192, 32, 96, 64)

        self.maxpool = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.a4 = Inception(480, 192,  96, 208, 16,  48,  64)
        self.b4 = Inception(512, 160, 112, 224, 24,  64,  64)
        self.c4 = Inception(512, 128, 128, 256, 24,  64,  64)
        self.d4 = Inception(512, 112, 144, 288, 32,  64,  64)
        self.e4 = Inception(528, 256, 160, 320, 32, 128, 128)

    def forward(self, x):
        out = self.pre_layers(x)
        out = self.a3(out)
        out = self.b3(out)
        out = self.maxpool(out)
        out = self.a4(out)
        out = self.b4(out)
        out = self.c4(out)
        out = self.d4(out)
        out = self.e4(out)

        return out


class Model(nn.Module):
    def __init__(self, n_parts=8):
        super(Model, self).__init__()
        self.n_parts = n_parts

        self.feat_conv = GoogLeNet()
        self.conv_input_feat = nn.Conv2d(self.feat_conv.output_channels, 512, 1)

        # part net
        self.conv_att = nn.Conv2d(512, self.n_parts, 1)

        for i in range(self.n_parts):
            setattr(self, 'linear_feature{}'.format(i+1), nn.Linear(512, 64))

    def forward(self, x):
        feature = self.feat_conv(x)
        feature = self.conv_input_feat(feature)

        att_weights = torch.sigmoid(self.conv_att(feature))

        linear_feautres = []
        for i in range(self.n_parts):
            masked_feature = feature * torch.unsqueeze(att_weights[:, i], 1)
            pooled_feature = F.avg_pool2d(masked_feature, masked_feature.size()[2:4])
            linear_feautres.append(
                getattr(self, 'linear_feature{}'.format(i+1))(pooled_feature.view(pooled_feature.size(0), -1))
            )

        concat_features = torch.cat(linear_feautres, 1)
        normed_feature = concat_features / torch.clamp(torch.norm(concat_features, 2, 1, keepdim=True), min=1e-6)

        return normed_feature


def load_reid_model(ckpt):
    model = Model(n_parts=8)
    model.inp_size = (80, 160)
    load_net(ckpt, model)
    print('Load ReID model from {}'.format(ckpt))

    model = model.cuda()
    model.eval()
    return model


def im_preprocess(image):
    image = np.asarray(image, np.float32)
    image -= np.array([104, 117, 123], dtype=np.float32).reshape(1, 1, -1)
    image = image.transpose((2, 0, 1))
    return image


def extract_image_patches(image, bboxes):
    bboxes = np.round(bboxes).astype(np.int)
    bboxes = clip_boxes(bboxes, image.shape)
    patches = [image[box[1]:box[3], box[0]:box[2]] for box in bboxes]
    return patches


def extract_reid_features(reid_model, image, tlbrs):
    if len(tlbrs) == 0:
        return torch.FloatTensor()

    patches = extract_image_patches(image, tlbrs)
    patches = np.asarray([im_preprocess(cv2.resize(p, reid_model.inp_size)) for p in patches], dtype=np.float32)

    with torch.no_grad():
        im_var = Variable(torch.from_numpy(patches))
        im_var = im_var.cuda()
        features = reid_model(im_var).data
    return features