Spaces:
Running
Running
File size: 3,747 Bytes
b31b8df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import streamlit as st
import pandas as pd
import lightgbm as lgb
import pickle
# Load the trained LightGBM model
with open('lgb.pkl', 'rb') as model_file:
model = pickle.load(model_file)
# Define mappings
workclass_map = {
'Private': 1,
'State-gov': 2,
'Federal-gov': 3,
'Self-emp-not-inc': 4,
'Self-emp-inc': 5,
'Local-gov': 6,
'Without-pay': 7,
'Never-worked': 8,
'?': 9
}
education_ranks = {
'Preschool': 1,
'1st-4th': 2,
'5th-6th': 3,
'7th-8th': 4,
'9th': 5,
'10th': 6,
'11th': 7,
'12th': 8,
'HS-grad': 9,
'Some-college': 10,
'Assoc-voc': 11,
'Assoc-acdm': 12,
'Bachelors': 13,
'Masters': 14,
'Prof-school': 15,
'Doctorate': 16
}
marital_map = {
'Married-civ-spouse': 1,
'Married-spouse-absent': 1,
'Married-AF-spouse': 1,
'Widowed': 2,
'Divorced': 2,
'Separated': 2,
'Never-married': 2
}
occupation_map = {
'Exec-managerial': 1,
'Machine-op-inspct': 2,
'Prof-specialty': 3,
'Other-service': 4,
'Adm-clerical': 5,
'Craft-repair': 6,
'Transport-moving': 7,
'Handlers-cleaners': 8,
'Sales': 9,
'Farming-fishing': 10,
'Tech-support': 11,
'Protective-serv': 12,
'Armed-Forces': 13,
'Priv-house-serv': 14
}
relationship_map = {
'Not-in-family': 1,
'Unmarried': 2,
'Own-child': 3,
'Other-relative': 4,
'Husband': 5,
'Wife': 6
}
income_map = {
'<=50K': 0,
'>50K': 1
}
# Define the input fields for the user to provide data
def get_user_input():
age = st.number_input('Age', min_value=0, max_value=120, value=30)
workclass = st.selectbox('Workclass', list(workclass_map.keys()))
fnlwgt = st.number_input('Fnlwgt', min_value=0, value=100000)
education = st.selectbox('Education', list(education_ranks.keys()))
education_num = st.number_input('Education Num', min_value=0, max_value=20, value=10)
marital_status = st.selectbox('Marital Status', list(marital_map.keys()))
occupation = st.selectbox('Occupation', list(occupation_map.keys()))
relationship = st.selectbox('Relationship', list(relationship_map.keys()))
capital_gain = st.number_input('Capital Gain', min_value=0, value=0)
capital_loss = st.number_input('Capital Loss', min_value=0, value=0)
hours_per_week = st.number_input('Hours Per Week', min_value=0, max_value=168, value=40)
user_data = {
'age': age,
'workclass_rank': workclass_map[workclass],
'fnlwgt': fnlwgt,
'education_rank': education_ranks[education],
'education.num': education_num,
'marital_status_binary': marital_map[marital_status],
'occupation_rank': occupation_map[occupation],
'relationship_rank': relationship_map[relationship],
'capital.gain': capital_gain,
'capital.loss': capital_loss,
'hours.per.week': hours_per_week
}
features = pd.DataFrame(user_data, index=[0])
return features
# Main function to run the app
def main():
st.title('Income Prediction App')
st.write('This app predicts whether a person makes over $50K a year based on their demographics and work information.')
user_input = get_user_input()
st.subheader('User Input:')
st.write(user_input)
prediction = model.predict(user_input)
prediction_proba = model.predict_proba(user_input)[:, 1]
st.subheader('Prediction:')
if prediction[0] == 1:
st.write('The model predicts: Income > $50K')
else:
st.write('The model predicts: Income <= $50K')
st.subheader('Prediction Probability:')
st.write(f'Probability of making over $50K: {prediction_proba[0]:.2f}')
if __name__ == '__main__':
main()
|