File size: 7,687 Bytes
115169a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import utils\n",
    "\n",
    "utils.load_env()\n",
    "os.environ['LANGCHAIN_TRACING_V2'] = \"true\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "from typing import Annotated, Literal, TypedDict\n",
    "\n",
    "from langchain_core.messages import HumanMessage\n",
    "\n",
    "# for llm model\n",
    "from langchain_anthropic import ChatAnthropic\n",
    "from langchain_openai import ChatOpenAI\n",
    "\n",
    "from langchain_core.tools import tool\n",
    "from langgraph.checkpoint.memory import MemorySaver\n",
    "from langgraph.graph import END, StateGraph, MessagesState\n",
    "from langgraph.prebuilt import ToolNode\n",
    "import tools\n",
    "\n",
    "\n",
    "tool_node = tools.tool_node\n",
    "\n",
    "# model = ChatAnthropic(model=\"claude-3-5-sonnet-20240620\", temperature=0).bind_tools(tools)\n",
    "model = ChatOpenAI(model=\"gpt-4o-mini\")\n",
    "\n",
    "# Define the function that determines whether to continue or not\n",
    "def should_continue(state: MessagesState) -> Literal[\"tools\", END]:\n",
    "    messages = state['messages']\n",
    "    last_message = messages[-1]\n",
    "    # If the LLM makes a tool call, then we route to the \"tools\" node\n",
    "    if last_message.tool_calls:\n",
    "        return \"tools\"\n",
    "    # Otherwise, we stop (reply to the user)\n",
    "    return END\n",
    "\n",
    "\n",
    "# Define the function that calls the model\n",
    "def call_model(state: MessagesState):\n",
    "    messages = state['messages']\n",
    "    response = model.invoke(messages)\n",
    "    # We return a list, because this will get added to the existing list\n",
    "    return {\"messages\": [response]}\n",
    "\n",
    "\n",
    "# Define a new graph\n",
    "workflow = StateGraph(MessagesState)\n",
    "\n",
    "# Define the two nodes we will cycle between\n",
    "workflow.add_node(\"agent\", call_model)\n",
    "workflow.add_node(\"tools\", tool_node)\n",
    "\n",
    "# Set the entrypoint as `agent`\n",
    "# This means that this node is the first one called\n",
    "workflow.set_entry_point(\"agent\")\n",
    "\n",
    "# We now add a conditional edge\n",
    "workflow.add_conditional_edges(\n",
    "    # First, we define the start node. We use `agent`.\n",
    "    # This means these are the edges taken after the `agent` node is called.\n",
    "    \"agent\",\n",
    "    # Next, we pass in the function that will determine which node is called next.\n",
    "    should_continue,\n",
    ")\n",
    "\n",
    "# We now add a normal edge from `tools` to `agent`.\n",
    "# This means that after `tools` is called, `agent` node is called next.\n",
    "workflow.add_edge(\"tools\", 'agent')\n",
    "\n",
    "# Initialize memory to persist state between graph runs\n",
    "checkpointer = MemorySaver()\n",
    "\n",
    "# Finally, we compile it!\n",
    "# This compiles it into a LangChain Runnable,\n",
    "# meaning you can use it as you would any other runnable.\n",
    "# Note that we're (optionally) passing the memory when compiling the graph\n",
    "app = workflow.compile(checkpointer=checkpointer)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "def submitUserMessage(message:str):\n",
    "    final_state = app.invoke(\n",
    "        {\"messages\": [HumanMessage(content=message)]},\n",
    "        config={\"configurable\": {\"thread_id\": 42}}\n",
    "    )\n",
    "    return final_state[\"messages\"][-1].content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Unable to load requested LangChainTracer. To disable this warning, unset the LANGCHAIN_TRACING_V2 environment variables.\n",
      "LangSmithUserError('API key must be provided when using hosted LangSmith API')\n",
      "Unable to load requested LangChainTracer. To disable this warning, unset the LANGCHAIN_TRACING_V2 environment variables.\n",
      "LangSmithUserError('API key must be provided when using hosted LangSmith API')\n",
      "Unable to load requested LangChainTracer. To disable this warning, unset the LANGCHAIN_TRACING_V2 environment variables.\n",
      "LangSmithUserError('API key must be provided when using hosted LangSmith API')\n",
      "Unable to load requested LangChainTracer. To disable this warning, unset the LANGCHAIN_TRACING_V2 environment variables.\n",
      "LangSmithUserError('API key must be provided when using hosted LangSmith API')\n",
      "Unable to load requested LangChainTracer. To disable this warning, unset the LANGCHAIN_TRACING_V2 environment variables.\n",
      "LangSmithUserError('API key must be provided when using hosted LangSmith API')\n",
      "Unable to load requested LangChainTracer. To disable this warning, unset the LANGCHAIN_TRACING_V2 environment variables.\n",
      "LangSmithUserError('API key must be provided when using hosted LangSmith API')\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'บริเวณมาบุญครองในกรุงเทพฯ มีร้านกาแฟหลายแห่งที่น่าสนใจ คุณสามารถลองไปที่ร้านเหล่านี้ได้:\\n\\n1. **ร้านกาแฟโฟลว์ (Flow Coffee)** - ร้านกาแฟเล็กๆ ที่มีบรรยากาศสบาย เหมาะสำหรับนั่งทำงานหรือนั่งชิลล์\\n2. **ร้านกาแฟ On the Way** - ร้านกาแฟที่มีเมนูหลากหลายและบรรยากาศดี\\n3. **ร้านกาแฟชิค (Chic)** - ร้านกาแฟที่มีการตกแต่งน่ารักและเครื่องดื่มหลากหลาย\\n4. **ร้านกาแฟ Starbucks** - มีสาขาหลายแห่งในกรุงเทพฯ รวมถึงใกล้บริเวณมาบุญครอง\\n5. **ร้านกาแฟดอยช้าง** - ที่มีชื่อเสียงในเรื่องของกาแฟจากดอยช้าง\\n\\nคุณสามารถค้นหาร้านกาแฟเพิ่มเติมได้จาก Google Maps หรือแอปพลิเคชันค้นหาร้านอาหารต่างๆ เพื่อดูรีวิวและข้อมูลเพิ่มเติมเกี่ยวกับร้านกาแฟใกล้มาบุญครองได้ค่ะ'"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "submitUserMessage(\"ค้นหาร้านกาแฟใกล้มาบุญครอง\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}