File size: 17,564 Bytes
fc5ecba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import os
import random
import time
import pickle
import math
from argparse import ArgumentParser

from typing import Iterable, List, Optional, Tuple

from tqdm import tqdm
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline, set_seed, GPT2Tokenizer, GPT2Model, MarianTokenizer, MarianMTModel
from torch import Tensor

from data import Dataset
from model import Model
from util import save_checkpoint, ProgressMeter, AverageMeter, num_params
from constants import *

def main(args):
    with open(args.dataset_info, 'rb') as rf:
        dataset_info = pickle.load(rf)
    tokenizer = MarianTokenizer.from_pretrained(args.model_string)
    tokenizer.add_special_tokens({'pad_token': PAD_TOKEN})
    pad_id = tokenizer.encode(PAD_TOKEN)[0]
    model = MarianMTModel.from_pretrained(args.model_string, return_dict=True).to(args.device)
    model.eval()

    checkpoint = torch.load(args.ckpt, map_location=args.device)
    model_args = checkpoint['args']
    conditioning_model = Model(model_args, pad_id, len(dataset_info.index2word)) # no need to get the glove embeddings when reloading since they're saved in model ckpt anyway
    conditioning_model.load_state_dict(checkpoint['state_dict'])
    conditioning_model = conditioning_model.to(args.device)
    conditioning_model.eval()
    print("=> loaded checkpoint '{}' (epoch {})"
            .format(args.ckpt, checkpoint['epoch']))
    print('num params', num_params(conditioning_model))

    while True:
        results = predict_formality(model, 
                        tokenizer, 
                        conditioning_model, 
                        [args.input_text], 
                        dataset_info, 
                        precondition_topk=args.precondition_topk,
                        do_sample=args.do_sample,
                        length_cutoff=args.length_cutoff,
                        condition_lambda=args.condition_lambda,
                        device=args.device)
        print(results)
        import pdb; pdb.set_trace()


def predict_formality(model, tokenizer, conditioning_model, input_text, dataset_info, precondition_topk=200, do_sample=False, length_cutoff=512, condition_lambda=1.0, device='cuda'):
    with torch.no_grad():
        batch_size = len(input_text)

        # assumes initially all same length.
        # encode every x_i i \in [seq] word to respectable embedding 
        encoded_input = [tokenizer.encode(it, return_tensors='pt').to(device) for it in input_text] # batch x seq
        encoded_input = torch.cat(encoded_input, dim=0)

        input_ids = torch.LongTensor([[58100]]).to(device)
        cur_len = 1
        max_length = length_cutoff
        min_length = 0
        temperature = 1.0
        top_k = 50
        top_p = 1.0
        repetition_penalty = 1.0
        no_repeat_ngram_size = 0
        bad_words_ids = [[58100]]
        pad_token_id = 58100
        eos_token_id = 0
        effective_batch_size = batch_size
        attention_mask = encoded_input.new_ones(encoded_input.shape)
        use_cache = True
        model_specific_kwargs = {'encoder_outputs': model.get_encoder()(encoded_input, attention_mask=attention_mask)}

        output = _generate_no_beam_search(model,
                                        conditioning_model,
                                        condition_lambda,
                                        precondition_topk,
                                        input_ids,
                                        cur_len,
                                        max_length,
                                        min_length,
                                        do_sample,
                                        temperature,
                                        top_k,
                                        top_p,
                                        repetition_penalty,
                                        no_repeat_ngram_size,
                                        bad_words_ids,
                                        pad_token_id,
                                        eos_token_id,
                                        batch_size,
                                        attention_mask,
                                        use_cache,
                                        model_specific_kwargs)

        return [tokenizer.decode(s[1:]) for s in output] # 1: to delete the pad token


# hack of code from transformers/generation_utils.py
# to get our conditioning
def postprocess_next_token_scores(
    model,
    scores,
    input_ids,
    no_repeat_ngram_size,
    bad_words_ids,
    cur_len,
    min_length,
    max_length,
    eos_token_id,
    repetition_penalty,
    batch_size,
    num_beams,
):
    # repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858)
    if repetition_penalty != 1.0:
        model.enforce_repetition_penalty_(
            scores,
            batch_size,
            num_beams,
            input_ids,
            repetition_penalty,
        )

    # set eos token prob to zero if min_length is not reached
    if eos_token_id is not None and cur_len < min_length:
        scores[:, eos_token_id] = -float("inf")

    if no_repeat_ngram_size > 0:
        # calculate a list of banned tokens to prevent repetitively generating the same ngrams
        num_batch_hypotheses = batch_size * num_beams
        # from fairseq: https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345
        banned_batch_tokens = calc_banned_ngram_tokens(
            input_ids, num_batch_hypotheses, no_repeat_ngram_size, cur_len
        )
        for i, banned_tokens in enumerate(banned_batch_tokens):
            scores[i, banned_tokens] = -float("inf")

    if bad_words_ids is not None:
        # Exclude EOS token (already processed)
        bad_words_ids = list(filter(lambda bad_token_seq: bad_token_seq != [eos_token_id], bad_words_ids))
        # calculate a list of banned tokens according to bad words
        banned_tokens = calc_banned_bad_words_ids(input_ids.tolist(), bad_words_ids)
        # Modify the scores in place by setting the banned tokens logits to `-inf`
        set_scores_to_inf_for_banned_tokens(scores, banned_tokens)

    return scores

def calc_banned_ngram_tokens(prev_input_ids: Tensor, num_hypos: int, no_repeat_ngram_size: int, cur_len: int) -> None:
    """Copied from fairseq for no_repeat_ngram in beam_search"""
    if cur_len + 1 < no_repeat_ngram_size:
        # return no banned tokens if we haven't generated no_repeat_ngram_size tokens yet
        return [[] for _ in range(num_hypos)]
    generated_ngrams = [{} for _ in range(num_hypos)]
    for idx in range(num_hypos):
        gen_tokens = prev_input_ids[idx].tolist()
        generated_ngram = generated_ngrams[idx]
        for ngram in zip(*[gen_tokens[i:] for i in range(no_repeat_ngram_size)]):
            prev_ngram_tuple = tuple(ngram[:-1])
            generated_ngram[prev_ngram_tuple] = generated_ngram.get(prev_ngram_tuple, []) + [ngram[-1]]

    def _get_generated_ngrams(hypo_idx):
        # Before decoding the next token, prevent decoding of ngrams that have already appeared
        start_idx = cur_len + 1 - no_repeat_ngram_size
        ngram_idx = tuple(prev_input_ids[hypo_idx, start_idx:cur_len].tolist())
        return generated_ngrams[hypo_idx].get(ngram_idx, [])

    banned_tokens = [_get_generated_ngrams(hypo_idx) for hypo_idx in range(num_hypos)]
    return banned_tokens


def calc_banned_bad_words_ids(prev_input_ids: Iterable[int], bad_words_ids: Iterable[int]) -> Iterable[int]:
    banned_tokens = []

    def _tokens_match(prev_tokens, tokens):
        if len(tokens) == 0:
            # if bad word tokens is just one token always ban it
            return True
        if len(tokens) > len(prev_tokens):
            # if bad word tokens are longer than prev tokens they can't be equal
            return False

        if prev_tokens[-len(tokens) :] == tokens:
            # if tokens match
            return True
        else:
            return False

    for prev_input_ids_slice in prev_input_ids:
        banned_tokens_slice = []

        for banned_token_seq in bad_words_ids:
            assert len(banned_token_seq) > 0, "Banned words token sequences {} cannot have an empty list".format(
                bad_words_ids
            )

            if _tokens_match(prev_input_ids_slice, banned_token_seq[:-1]) is False:
                # if tokens do not match continue
                continue

            banned_tokens_slice.append(banned_token_seq[-1])

        banned_tokens.append(banned_tokens_slice)

    return banned_tokens

def set_scores_to_inf_for_banned_tokens(scores: torch.Tensor, banned_tokens: List[List[int]]) -> None:
    """Modifies the scores in place by setting the banned token positions to `-inf`. Banned token is expected to be
    a list of list of banned tokens to ban in the format [[batch index, vocabulary position],...]
        Args:
            scores: logits distribution of shape (batch size, vocabulary size)
            banned_tokens: list of list of tokens to ban of length (batch_size)
    """
    banned_mask_list = []
    for idx, batch_banned_tokens in enumerate(banned_tokens):
        for token in batch_banned_tokens:
            banned_mask_list.append([idx, token])
    if not banned_mask_list:
        return
    banned_mask = torch.LongTensor(banned_mask_list)
    indices = torch.ones(len(banned_mask))
    # A sparse tensor is generated from a list of coordinates: [[0, 1], [0, 2], [2, 0]]. A conversion to dense tensor generates:
    # [ 0  1  1 ]
    # [ 0  0  0 ]
    # [ 1  0  0 ]

    banned_mask = torch.sparse.LongTensor(banned_mask.t(), indices, scores.size()).to(scores.device).to_dense().bool()
    scores.masked_fill_(banned_mask, -float("inf"))
    
def _generate_no_beam_search(
        model,
        conditioning_model,
        condition_lambda,
        precondition_topk,
        input_ids,
        cur_len,
        max_length,
        min_length,
        do_sample,
        temperature,
        top_k,
        top_p,
        repetition_penalty,
        no_repeat_ngram_size,
        bad_words_ids,
        pad_token_id,
        eos_token_id,
        batch_size,
        attention_mask,
        use_cache,
        model_kwargs,
    ):
        """Generate sequences for each example without beam search (num_beams == 1).
        All returned sequence are generated independantly.
        """
        # length of generated sentences / unfinished sentences
        unfinished_sents = input_ids.new(batch_size).fill_(1)
        sent_lengths = input_ids.new(batch_size).fill_(max_length)
        past = None
        while cur_len < max_length:
            model_inputs = model.prepare_inputs_for_generation(
                input_ids, past=past, attention_mask=attention_mask, use_cache=use_cache, **model_kwargs
            )

            outputs = model(**model_inputs, return_dict=True)
            next_token_logits = outputs.logits[:, -1, :]

            # scores = model.postprocess_next_token_scores(
            #     scores=next_token_logits,
            #     input_ids=input_ids,
            #     no_repeat_ngram_size=no_repeat_ngram_size,
            #     bad_words_ids=bad_words_ids,
            #     cur_len=cur_len,
            #     min_length=min_length,
            #     max_length=max_length,
            #     eos_token_id=eos_token_id,
            #     repetition_penalty=repetition_penalty,
            #     batch_size=batch_size,
            #     num_beams=1,
            # )

            scores = postprocess_next_token_scores(
                model=model,
                scores=next_token_logits,
                input_ids=input_ids,
                no_repeat_ngram_size=no_repeat_ngram_size,
                bad_words_ids=bad_words_ids,
                cur_len=cur_len,
                min_length=min_length,
                max_length=max_length,
                eos_token_id=eos_token_id,
                repetition_penalty=repetition_penalty,
                batch_size=batch_size,
                num_beams=1,
            )

            # if model has past, then set the past variable to speed up decoding
            if "past_key_values" in outputs:
                past = outputs.past_key_values
            elif "mems" in outputs:
                past = outputs.mems

            top_logits, top_indices = scores.topk(precondition_topk, dim=1) # batch x topk
            tplus1_candidates = torch.cat([input_ids.unsqueeze(1).expand(-1, precondition_topk, -1), top_indices.unsqueeze(2)], dim=2)[:, :, 1:] # batch x topk x seq+1, with pad dropped
            expanded_lengths = torch.LongTensor([[cur_len for _ in range(precondition_topk)] for _ in range(batch_size)]).to(scores.device)
            if condition_lambda == 0:
                condition_logits = torch.zeros_like(top_logits).float()
            else:
                condition_logits = conditioning_model(tplus1_candidates.flatten(0, 1), # batch*topk x seq+1
                                                    expanded_lengths.flatten(0, 1), # batch*topk
                                                    None,
                                                    None,
                                                    None)
                condition_logits = condition_logits.view(batch_size, precondition_topk, -1)[:, :, -1] # batch x topk of last formality pred
                condition_logits = condition_logits - torch.log(1 + torch.exp(condition_logits)) # get correct log probs
                # condition_logits = - torch.log(1 + torch.exp(condition_logits)) # for informal
            full_logits = top_logits + condition_lambda * condition_logits
            if do_sample:
                raise NotImplementedError
            else:
                # Greedy decoding
                next_token = top_indices[torch.arange(batch_size).to(top_indices.device), torch.argmax(full_logits, dim=-1)]

            # if do_sample:
            #     # Temperature (higher temperature => more likely to sample low probability tokens)
            #     if temperature != 1.0:
            #         scores = scores / temperature
            #     # Top-p/top-k filtering
            #     next_token_logscores = top_k_top_p_filtering(scores, top_k=top_k, top_p=top_p)
            #     # Sample
            #     probs = F.softmax(next_token_logscores, dim=-1)
            #     next_token = torch.multinomial(probs, num_samples=1).squeeze(1)
            # else:
            #     # Greedy decoding
            #     next_token = torch.argmax(next_token_logits, dim=-1)

            # update generations and finished sentences
            if eos_token_id is not None:
                # pad finished sentences if eos_token_id exist
                tokens_to_add = next_token * unfinished_sents + (pad_token_id) * (1 - unfinished_sents)
            else:
                tokens_to_add = next_token
            
            # add token and increase length by one
            input_ids = torch.cat([input_ids, tokens_to_add.unsqueeze(-1)], dim=-1)
            cur_len = cur_len + 1

            if eos_token_id is not None:
                eos_in_sents = tokens_to_add == eos_token_id
                # if sentence is unfinished and the token to add is eos, sent_lengths is filled with current length
                is_sents_unfinished_and_token_to_add_is_eos = unfinished_sents.mul(eos_in_sents.long()).bool()
                sent_lengths.masked_fill_(is_sents_unfinished_and_token_to_add_is_eos, cur_len)
                # unfinished_sents is set to zero if eos in sentence
                unfinished_sents.mul_((~eos_in_sents).long())

            # stop when there is a </s> in each sentence, or if we exceed the maximul length
            if unfinished_sents.max() == 0:
                break

            # extend attention_mask for new generated input if only decoder
            if model.config.is_encoder_decoder is False:
                attention_mask = torch.cat(
                    [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
                )

        return input_ids

if __name__=='__main__':
    parser = ArgumentParser()

    # DATA
    parser.add_argument('--ckpt', type=str, required=True)
    parser.add_argument('--dataset_info', type=str, required=True, help='saved dataset info')
    parser.add_argument('--model_string', type=str, default='Helsinki-NLP/opus-mt-es-en')

    parser.add_argument('--input_text', type=str, default=None, required=True, help='text to run pred on')

    parser.add_argument('--precondition_topk', type=int, default=200, help='consider top k outputs from gpt at each step before conditioning and re-pruning')
    parser.add_argument('--do_sample', action='store_true', default=False, help='sample instead of greedy')
    parser.add_argument('--condition_lambda', type=float, default=1.0, help='lambda weight on conditioning model')
    parser.add_argument('--length_cutoff', type=int, default=512, help='max length')

    parser.add_argument('--seed', type=int, default=1, help='random seed')
    parser.add_argument('--device', type=str, default='cuda', choices=['cpu', 'cuda'])
    parser.add_argument('--debug', action='store_true', default=False)

    args = parser.parse_args()

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    main(args)