File size: 4,583 Bytes
08d991a
 
 
 
 
 
52aa226
 
 
 
 
 
08d991a
 
52aa226
08d991a
 
 
52aa226
08d991a
 
 
 
 
52aa226
 
08d991a
52aa226
 
08d991a
52aa226
 
08d991a
 
 
52aa226
08d991a
52aa226
 
 
 
08d991a
52aa226
 
 
 
08d991a
52aa226
 
 
 
 
 
 
 
08d991a
52aa226
 
 
08d991a
52aa226
08d991a
52aa226
08d991a
 
52aa226
 
08d991a
52aa226
08d991a
52aa226
08d991a
52aa226
08d991a
 
 
 
 
 
52aa226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08d991a
52aa226
 
 
 
 
 
08d991a
52aa226
 
 
08d991a
 
 
 
52aa226
08d991a
 
 
52aa226
08d991a
 
52aa226
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import logging
import torch
from PIL import Image
import numpy as np
from torchvision import transforms
from torchvision.models.segmentation import deeplabv3_resnet50
from transformers import (
    SegformerForSemanticSegmentation,
    SegformerFeatureExtractor,
    AutoProcessor,
    CLIPSegForImageSegmentation,
)

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")

class Segmenter:
    """
    Generalized Semantic Segmentation Wrapper for SegFormer, DeepLabV3, and CLIPSeg.
    """

    def __init__(self, model_key="nvidia/segformer-b0-finetuned-ade-512-512", device="cpu"):
        """
        Args:
            model_key (str): HF model identifier or 'deeplabv3_resnet50'.
            device (str): 'cpu' or 'cuda'.
        """
        logger.info(f"Initializing Segmenter for model '{model_key}' on {device}")
        self.model_key = model_key.lower()
        self.device = device
        self.model = None
        self.processor = None  # for transformers-based models

    def _load_model(self):
        """
        Lazy-load the model & processor based on model_key.
        """
        if self.model is not None:
            return

        # SegFormer
        if "segformer" in self.model_key:
            self.model = SegformerForSemanticSegmentation.from_pretrained(self.model_key).to(self.device).eval()
            self.processor = SegformerFeatureExtractor.from_pretrained(self.model_key)

        # DeepLabV3
        elif self.model_key == "deeplabv3_resnet50":
            self.model = deeplabv3_resnet50(pretrained=True).to(self.device).eval()
            self.processor = None

        # CLIPSeg
        elif "clipseg" in self.model_key:
            self.model = CLIPSegForImageSegmentation.from_pretrained(self.model_key).to(self.device).eval()
            self.processor = AutoProcessor.from_pretrained(self.model_key)

        else:
            raise ValueError(f"Unsupported segmentation model key: '{self.model_key}'")

        logger.info(f"Loaded segmentation model '{self.model_key}'")

    def predict(self, image: Image.Image, prompt: str = "", **kwargs) -> np.ndarray:
        """
        Perform segmentation.

        Args:
            image (PIL.Image.Image): Input.
            prompt (str): Only used for CLIPSeg.
        Returns:
            np.ndarray: Segmentation mask (H×W).
        """
        self._load_model()

        # SegFormer path
        if "segformer" in self.model_key:
            inputs = self.processor(images=image, return_tensors="pt").to(self.device)
            outputs = self.model(**inputs)
            mask = outputs.logits.argmax(dim=1).squeeze().cpu().numpy()
            return mask

        # DeepLabV3 path
        if self.model_key == "deeplabv3_resnet50":
            tf = transforms.ToTensor()
            inp = tf(image).unsqueeze(0).to(self.device)
            with torch.no_grad():
                out = self.model(inp)["out"]
            mask = out.argmax(1).squeeze().cpu().numpy()
            return mask

        # CLIPSeg path
        if "clipseg" in self.model_key:
            # CLIPSeg expects both text and image
            inputs = self.processor(
                text=[prompt],              # list of prompts
                images=[image],             # list of images
                return_tensors="pt"
            ).to(self.device)
            with torch.no_grad():
                outputs = self.model(**inputs)
            # outputs.logits shape: (batch=1, height, width)
            mask = outputs.logits.squeeze(0).cpu().numpy()
            # Optionally threshold to binary:
            # mask = (mask > kwargs.get("threshold", 0.5)).astype(np.uint8)
            return mask

        raise RuntimeError("Unreachable segmentation branch")

    def draw(self, image: Image.Image, mask: np.ndarray, alpha=0.5) -> Image.Image:
        """
        Overlay the segmentation mask on the input image.

        Args:
            image (PIL.Image.Image): Original.
            mask (np.ndarray): Segmentation mask.
            alpha (float): Blend strength.
        Returns:
            PIL.Image.Image: Blended output.
        """
        logger.info("Drawing segmentation overlay")
        # Normalize mask to 0–255
        gray = ((mask - mask.min()) / (mask.ptp()) * 255).astype(np.uint8)
        mask_img = Image.fromarray(gray).convert("L").resize(image.size)
        # Make it RGB
        color_mask = Image.merge("RGB", (mask_img, mask_img, mask_img))
        return Image.blend(image, color_mask, alpha)