Spaces:
Sleeping
Sleeping
File size: 3,718 Bytes
d0f4eb9 1af1ebb d0f4eb9 1af1ebb d0f4eb9 1af1ebb d0f4eb9 1af1ebb d0f4eb9 1af1ebb d0f4eb9 1af1ebb d0f4eb9 1af1ebb d0f4eb9 1af1ebb d0f4eb9 1af1ebb d0f4eb9 1af1ebb d0f4eb9 1af1ebb d0f4eb9 1af1ebb d0f4eb9 acf1e75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import os
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_openai import ChatOpenAI
from langgraph.graph import MessagesState
from langgraph.graph import START, StateGraph
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_core.messages import HumanMessage, SystemMessage
import tempfile
# ------------------- Environment Variable Setup -------------------
# Fetch API keys from environment variables
openai_api_key = os.getenv("OPENAI_API_KEY")
tavily_api_key = os.getenv("TAVILY_API_KEY")
# Verify if API keys are set
if not openai_api_key:
raise ValueError("Missing required environment variable: OPENAI_API_KEY")
if not tavily_api_key:
raise ValueError("Missing required environment variable: TAVILY_API_KEY")
# ------------------- Tool Definitions -------------------
# Tavily Search Tool
tavily_tool = TavilySearchResults(max_results=5)
def multiply(a: int, b: int) -> int:
"""Multiply two numbers."""
return a * b
def add(a: int, b: int) -> int:
"""Add two numbers."""
return a + b
def divide(a: int, b: int) -> float:
"""Divide two numbers."""
if b == 0:
raise ValueError("Division by zero is not allowed.")
return a / b
# Combine tools
tools = [add, multiply, divide, tavily_tool]
# ------------------- LLM and System Message Setup -------------------
llm = ChatOpenAI(model="gpt-4o-mini")
llm_with_tools = llm.bind_tools(tools, parallel_tool_calls=False)
sys_msg = SystemMessage(content="You are a helpful assistant tasked with performing arithmetic and search on a set of inputs.")
# ------------------- LangGraph Workflow -------------------
def assistant(state: MessagesState):
"""Assistant node to invoke LLM with tools."""
return {"messages": [llm_with_tools.invoke([sys_msg] + state["messages"])]}
# Define the graph
app_graph = StateGraph(MessagesState)
app_graph.add_node("assistant", assistant)
app_graph.add_node("tools", ToolNode(tools))
app_graph.add_edge(START, "assistant")
app_graph.add_conditional_edges("assistant", tools_condition)
app_graph.add_edge("tools", "assistant")
react_graph = app_graph.compile()
# Save graph visualization as an image
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmpfile:
graph = react_graph.get_graph(xray=True)
tmpfile.write(graph.draw_mermaid_png()) # Write binary image data to file
graph_image_path = tmpfile.name
# ------------------- Streamlit Interface -------------------
st.title("ReAct Agent for Arithmetic Ops & Web Search")
# Display the workflow graph
#st.header("LangGraph Workflow Visualization")
st.image(graph_image_path, caption="Workflow Visualization")
# Prompt user for inputs
user_question = st.text_area("Enter your question:",
placeholder="Example: 'Add 3 and 4. Multiply the result by 2. Divide it by 5.'")
if st.button("Submit"):
if not user_question.strip():
st.error("Please enter a valid question.")
st.stop()
st.info("Processing your question...")
messages = [HumanMessage(content=user_question)]
response = react_graph.invoke({"messages": messages})
# Display results
st.subheader("Responses")
for m in response['messages']:
st.write(m.content)
st.success("Processing complete!")
# Example Placeholder Suggestions
st.sidebar.subheader("Example Questions")
st.sidebar.write("- Add 3 and 4. Multiply the result by 2. Divide it by 5.")
st.sidebar.write("- Tell me how many centuries Virat Kohli scored.")
st.sidebar.write("- Search for the tallest building in the world.") |