Spaces:
Sleeping
Sleeping
File size: 8,821 Bytes
3238cf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
# to-do: Enable downloading multiple patent PDFs via corresponding links
import sys
import os
import re
import shutil
import time
import fitz
import streamlit as st
import nltk
import tempfile
import subprocess
# Pin NLTK to version 3.9.1
REQUIRED_NLTK_VERSION = "3.9.1"
subprocess.run([sys.executable, "-m", "pip", "install", f"nltk=={REQUIRED_NLTK_VERSION}"])
# Set up temporary directory for NLTK resources
nltk_data_path = os.path.join(tempfile.gettempdir(), "nltk_data")
os.makedirs(nltk_data_path, exist_ok=True)
nltk.data.path.append(nltk_data_path)
# Download 'punkt_tab' for compatibility
try:
print("Ensuring NLTK 'punkt_tab' resource is downloaded...")
nltk.download("punkt_tab", download_dir=nltk_data_path)
except Exception as e:
print(f"Error downloading NLTK 'punkt_tab': {e}")
raise e
sys.path.append(os.path.abspath("."))
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.llms import OpenAI
from langchain.document_loaders import UnstructuredPDFLoader
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import NLTKTextSplitter
from patent_downloader import PatentDownloader
PERSISTED_DIRECTORY = tempfile.mkdtemp()
# Fetch API key securely from the environment
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
if not OPENAI_API_KEY:
st.error("Critical Error: OpenAI API key not found in the environment variables. Please configure it.")
st.stop()
def check_poppler_installed():
if not shutil.which("pdfinfo"):
raise EnvironmentError(
"Poppler is not installed or not in PATH. Install 'poppler-utils' for PDF processing."
)
check_poppler_installed()
def load_docs(document_path):
try:
loader = UnstructuredPDFLoader(
document_path,
mode="elements",
strategy="fast",
ocr_languages=None
)
documents = loader.load()
text_splitter = NLTKTextSplitter(chunk_size=1000)
split_docs = text_splitter.split_documents(documents)
# Filter metadata to only include str, int, float, or bool
for doc in split_docs:
if hasattr(doc, "metadata") and isinstance(doc.metadata, dict):
doc.metadata = {
k: v for k, v in doc.metadata.items()
if isinstance(v, (str, int, float, bool))
}
return split_docs
except Exception as e:
st.error(f"Failed to load and process PDF: {e}")
st.stop()
def already_indexed(vectordb, file_name):
indexed_sources = set(
x["source"] for x in vectordb.get(include=["metadatas"])["metadatas"]
)
return file_name in indexed_sources
def load_chain(file_name=None):
loaded_patent = st.session_state.get("LOADED_PATENT")
vectordb = Chroma(
persist_directory=PERSISTED_DIRECTORY,
embedding_function=HuggingFaceEmbeddings(),
)
if loaded_patent == file_name or already_indexed(vectordb, file_name):
st.write("✅ Already indexed.")
else:
vectordb.delete_collection()
docs = load_docs(file_name)
st.write("🔍 Number of Documents: ", len(docs))
vectordb = Chroma.from_documents(
docs, HuggingFaceEmbeddings(), persist_directory=PERSISTED_DIRECTORY
)
vectordb.persist()
st.session_state["LOADED_PATENT"] = file_name
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True,
input_key="question",
output_key="answer",
)
return ConversationalRetrievalChain.from_llm(
OpenAI(temperature=0, openai_api_key=OPENAI_API_KEY),
vectordb.as_retriever(search_kwargs={"k": 3}),
return_source_documents=False,
memory=memory,
)
def extract_patent_number(url):
pattern = r"/patent/([A-Z]{2}\d+)"
match = re.search(pattern, url)
return match.group(1) if match else None
def download_pdf(patent_number):
try:
patent_downloader = PatentDownloader(verbose=True)
output_path = patent_downloader.download(patents=patent_number, output_path=tempfile.gettempdir())
return output_path[0]
except Exception as e:
st.error(f"Failed to download patent PDF: {e}")
st.stop()
def preview_pdf(pdf_path):
"""Generate and display the first page of the PDF as an image."""
try:
doc = fitz.open(pdf_path) # Open PDF
first_page = doc[0] # Extract the first page
pix = first_page.get_pixmap() # Render page to a Pixmap (image)
temp_image_path = os.path.join(tempfile.gettempdir(), "pdf_preview.png")
pix.save(temp_image_path) # Save the image temporarily
return temp_image_path
except Exception as e:
st.error(f"Error generating PDF preview: {e}")
return None
if __name__ == "__main__":
st.set_page_config(
page_title="Patent Chat: Google Patents Chat Demo",
page_icon="📖",
layout="wide",
initial_sidebar_state="expanded",
)
st.header("📖 Patent Chat: Google Patents Chat Demo")
# Fetch query parameters safely
query_params = st.query_params
default_patent_link = query_params.get("patent_link", "https://patents.google.com/patent/US8676427B1/en")
# Input for Google Patent Link
patent_link = st.text_area("Enter Google Patent Link:", value=default_patent_link, height=100)
# Button to start processing
if st.button("Load and Process Patent"):
if not patent_link:
st.warning("Please enter a Google patent link to proceed.")
st.stop()
# Extract patent number
patent_number = extract_patent_number(patent_link)
if not patent_number:
st.error("Invalid patent link format. Please provide a valid Google patent link.")
st.stop()
st.write(f"Patent number: **{patent_number}**")
# File download handling
pdf_path = os.path.join(tempfile.gettempdir(), f"{patent_number}.pdf")
if os.path.isfile(pdf_path):
st.write("✅ File already downloaded.")
else:
st.write("📥 Downloading patent file...")
pdf_path = download_pdf(patent_number)
st.write(f"✅ File downloaded: {pdf_path}")
# Generate and display PDF preview
st.write("🖼️ Generating PDF preview...")
preview_image_path = preview_pdf(pdf_path)
if preview_image_path:
st.image(preview_image_path, caption="First Page Preview", use_column_width=True)
else:
st.warning("Failed to generate a preview for this PDF.")
# Load the document into the system
st.write("🔄 Loading document into the system...")
# Persist the chain in session state to prevent reloading
if "chain" not in st.session_state or st.session_state.get("loaded_file") != pdf_path:
st.session_state.chain = load_chain(pdf_path)
st.session_state.loaded_file = pdf_path
st.session_state.messages = [{"role": "assistant", "content": "Hello! How can I assist you with this patent?"}]
st.success("🚀 Document successfully loaded! You can now start asking questions.")
# Initialize messages if not already done
if "messages" not in st.session_state:
st.session_state.messages = [{"role": "assistant", "content": "Hello! How can I assist you with this patent?"}]
# Display previous chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# User input and chatbot response
if "chain" in st.session_state:
if user_input := st.chat_input("What is your question?"):
st.session_state.messages.append({"role": "user", "content": user_input})
with st.chat_message("user"):
st.markdown(user_input)
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
with st.spinner("Generating response..."):
try:
assistant_response = st.session_state.chain({"question": user_input})
full_response = assistant_response["answer"]
except Exception as e:
full_response = f"An error occurred: {e}"
message_placeholder.markdown(full_response)
st.session_state.messages.append({"role": "assistant", "content": full_response})
else:
st.info("Press the 'Load and Process Patent' button to start processing.")
|