File size: 5,975 Bytes
87b256d
5e05c49
87b256d
 
5e05c49
87b256d
 
 
 
 
 
5e05c49
87b256d
 
 
 
 
 
 
 
5e05c49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87b256d
 
5e05c49
87b256d
 
 
 
5e05c49
 
87b256d
5e05c49
 
 
87b256d
 
5e05c49
 
87b256d
 
 
 
5e05c49
 
87b256d
5e05c49
 
 
87b256d
 
 
 
 
 
 
5e05c49
 
 
87b256d
5e05c49
 
 
87b256d
5e05c49
 
87b256d
 
5e05c49
87b256d
5e05c49
 
 
 
87b256d
5e05c49
 
87b256d
 
 
 
5e05c49
 
87b256d
5e05c49
 
 
 
 
 
 
 
87b256d
5e05c49
87b256d
 
5e05c49
87b256d
 
 
 
 
 
 
5e05c49
87b256d
5e05c49
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
import chromadb
import requests
import streamlit as st
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_groq import ChatGroq
from langchain.document_loaders import PDFPlumberLoader
from langchain_experimental.text_splitter import SemanticChunker
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth

# Set API Keys
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")

# Load LLM models
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
rag_llm = ChatGroq(model="mixtral-8x7b-32768")

llm_judge.verbose = True
rag_llm.verbose = True

# Clear ChromaDB cache to fix tenant issue
chromadb.api.client.SharedSystemClient.clear_system_cache()

st.title("Blah")

# **Initialize session state variables**
if "pdf_path" not in st.session_state:
    st.session_state.pdf_path = None  
if "pdf_loaded" not in st.session_state:
    st.session_state.pdf_loaded = False
if "chunked" not in st.session_state:
    st.session_state.chunked = False
if "vector_created" not in st.session_state:
    st.session_state.vector_created = False
if "vector_store_path" not in st.session_state:
    st.session_state.vector_store_path = "./chroma_langchain_db"
if "vector_store" not in st.session_state:
    st.session_state.vector_store = None
if "documents" not in st.session_state:
    st.session_state.documents = None

# Step 1: Choose PDF Source
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)

if pdf_source == "Upload a PDF file":
    uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
    if uploaded_file:
        st.session_state.pdf_path = "temp.pdf"
        with open(st.session_state.pdf_path, "wb") as f:
            f.write(uploaded_file.getbuffer())
        st.session_state.pdf_loaded = False
        st.session_state.chunked = False
        st.session_state.vector_created = False

elif pdf_source == "Enter a PDF URL":
    pdf_url = st.text_input("Enter PDF URL:", value="https://arxiv.org/pdf/2406.06998")
    if pdf_url and st.session_state.pdf_path is None:
        with st.spinner("Downloading PDF..."):
            try:
                response = requests.get(pdf_url)
                if response.status_code == 200:
                    st.session_state.pdf_path = "temp.pdf"
                    with open(st.session_state.pdf_path, "wb") as f:
                        f.write(response.content)
                    st.session_state.pdf_loaded = False
                    st.session_state.chunked = False
                    st.session_state.vector_created = False
                    st.success("βœ… PDF Downloaded Successfully!")
                else:
                    st.error("❌ Failed to download PDF. Check the URL.")
            except Exception as e:
                st.error(f"Error downloading PDF: {e}")

# Step 2: Process PDF
if st.session_state.pdf_path and not st.session_state.pdf_loaded:
    with st.spinner("Loading and processing PDF..."):
        loader = PDFPlumberLoader(st.session_state.pdf_path)
        docs = loader.load()
        st.session_state.documents = docs
        st.session_state.pdf_loaded = True
        st.success(f"βœ… **PDF Loaded!** Total Pages: {len(docs)}")

# Step 3: Chunking
if st.session_state.pdf_loaded and not st.session_state.chunked and st.session_state.documents:
    with st.spinner("Chunking the document..."):
        model_name = "nomic-ai/modernbert-embed-base"
        embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': False})
        text_splitter = SemanticChunker(embedding_model)
        documents = text_splitter.split_documents(st.session_state.documents)
        st.session_state.documents = documents  # Store chunked docs
        st.session_state.chunked = True
        st.success(f"βœ… **Document Chunked!** Total Chunks: {len(documents)}")

# Step 4: Setup Vectorstore
if st.session_state.chunked and not st.session_state.vector_created:
    with st.spinner("Creating vector store..."):
        vector_store = Chroma(
            collection_name="deepseek_collection",
            collection_metadata={"hnsw:space": "cosine"},
            embedding_function=embedding_model,
            persist_directory=st.session_state.vector_store_path
        )
        vector_store.add_documents(st.session_state.documents)
        num_documents = len(vector_store.get()["documents"])
        st.session_state.vector_store = vector_store
        st.session_state.vector_created = True
        st.success(f"βœ… **Vector Store Created!** Total documents stored: {num_documents}")

# Step 5: Query Input
if st.session_state.vector_created and st.session_state.vector_store:
    query = st.text_input("πŸ” Enter a Query:")
    
    if query:
        with st.spinner("Retrieving relevant contexts..."):
            retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
            contexts = retriever.invoke(query)
            context_texts = [doc.page_content for doc in contexts]

        st.success(f"βœ… **Retrieved {len(context_texts)} Contexts!**")
        for i, text in enumerate(context_texts, 1):
            st.write(f"**Context {i}:** {text[:500]}...")

        # **Step 6: Generate Final Response**
        with st.spinner("Generating the final answer..."):
            final_prompt = PromptTemplate(input_variables=["query", "context"], template=rag_prompt)
            response_chain = LLMChain(llm=rag_llm, prompt=final_prompt, output_key="final_response")
            final_response = response_chain.invoke({"query": query, "context": context_texts})

        st.subheader("πŸŸ₯ RAG Final Response")
        st.success(final_response['final_response'])