File size: 14,630 Bytes
f2dbf59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import math
from pathlib import Path

import cv2
import numpy as np
import onnxruntime
import torch
from PIL import Image, ImageDraw, ImageFilter

import folder_paths
from comfy.utils import ProgressBar, common_upscale

from .utils.downloader import download_model
from .utils.image_convert import np2tensor, pil2mask, pil2tensor, tensor2mask, tensor2np, tensor2pil
from .utils.mask_utils import blur_mask, expand_mask, fill_holes, invert_mask

_CATEGORY = 'fnodes/face_analysis'


class Occluder:
    def __init__(self, occluder_model_path):
        self.occluder_model_path = occluder_model_path
        self.face_occluder = self.get_face_occluder()

    def get_face_occluder(self):
        return onnxruntime.InferenceSession(
            self.occluder_model_path,
            providers=['CPUExecutionProvider'],
        )

    def create_occlusion_mask(self, crop_vision_frame):
        prepare_vision_frame = cv2.resize(crop_vision_frame, self.face_occluder.get_inputs()[0].shape[1:3][::-1])
        prepare_vision_frame = np.expand_dims(prepare_vision_frame, axis=0).astype(np.float32) / 255
        prepare_vision_frame = prepare_vision_frame.transpose(0, 1, 2, 3)
        occlusion_mask = self.face_occluder.run(None, {self.face_occluder.get_inputs()[0].name: prepare_vision_frame})[0][0]
        occlusion_mask = occlusion_mask.transpose(0, 1, 2).clip(0, 1).astype(np.float32)
        occlusion_mask = cv2.resize(occlusion_mask, crop_vision_frame.shape[:2][::-1])
        occlusion_mask = (cv2.GaussianBlur(occlusion_mask.clip(0, 1), (0, 0), 5).clip(0.5, 1) - 0.5) * 2
        return occlusion_mask


class GeneratePreciseFaceMask:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            'required': {
                'input_image': ('IMAGE',),
            },
            'optional': {
                'grow': ('INT', {'default': 0, 'min': -4096, 'max': 4096, 'step': 1}),
                'grow_percent': (
                    'FLOAT',
                    {'default': 0.00, 'min': 0.00, 'max': 2.0, 'step': 0.01},
                ),
                'grow_tapered': ('BOOLEAN', {'default': False}),
                'blur': ('INT', {'default': 0, 'min': 0, 'max': 4096, 'step': 1}),
                'fill': ('BOOLEAN', {'default': False}),
            },
        }

    RETURN_TYPES = (
        'MASK',
        'MASK',
        'IMAGE',
    )
    RETURN_NAMES = (
        'mask',
        'inverted_mask',
        'image',
    )
    FUNCTION = 'generate_mask'
    CATEGORY = _CATEGORY
    DESCRIPTION = '生成精确人脸遮罩'

    def _load_occluder_model(self):
        """加载人脸遮挡模型"""
        model_url = 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/dfl_xseg.onnx'
        save_loc = Path(folder_paths.models_dir) / 'fnodes' / 'occluder'
        model_name = 'occluder.onnx'
        download_model(model_url, save_loc, model_name)
        return Occluder(str(save_loc / model_name))

    def generate_mask(self, input_image, grow, grow_percent, grow_tapered, blur, fill):
        face_occluder_model = self._load_occluder_model()

        out_mask, out_inverted_mask, out_image = [], [], []

        steps = input_image.shape[0]
        if steps > 1:
            pbar = ProgressBar(steps)

        for i in range(steps):
            mask, processed_img = self._process_single_image(input_image[i], face_occluder_model, grow, grow_percent, grow_tapered, blur, fill)
            out_mask.append(mask)
            out_inverted_mask.append(invert_mask(mask))
            out_image.append(processed_img)
            if steps > 1:
                pbar.update(1)

        return torch.stack(out_mask).squeeze(-1), torch.stack(out_inverted_mask).squeeze(-1), torch.stack(out_image)

    def _process_single_image(self, img, face_occluder_model, grow, grow_percent, grow_tapered, blur, fill):
        """处理单张图像"""
        face = tensor2np(img)
        if face is None:
            print('\033[96mNo face detected\033[0m')
            return torch.zeros_like(img)[:, :, :1], torch.zeros_like(img)

        cv2_image = cv2.cvtColor(np.array(face), cv2.COLOR_RGB2BGR)
        occlusion_mask = face_occluder_model.create_occlusion_mask(cv2_image)

        if occlusion_mask is None:
            print('\033[96mNo landmarks detected\033[0m')
            return torch.zeros_like(img)[:, :, :1], torch.zeros_like(img)

        mask = self._process_mask(occlusion_mask, img, grow, grow_percent, grow_tapered, blur, fill)
        processed_img = img * mask.repeat(1, 1, 3)
        return mask, processed_img

    def _process_mask(self, occlusion_mask, img, grow, grow_percent, grow_tapered, blur, fill):
        """处理遮罩"""
        mask = np2tensor(occlusion_mask).unsqueeze(0).squeeze(-1).clamp(0, 1).to(device=img.device)

        grow_count = int(grow_percent * max(mask.shape)) + grow
        if grow_count > 0:
            mask = expand_mask(mask, grow_count, grow_tapered)

        if fill:
            mask = fill_holes(mask)

        if blur > 0:
            mask = blur_mask(mask, blur)

        return mask.squeeze(0).unsqueeze(-1)


class AlignImageByFace:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            'required': {
                'analysis_models': ('ANALYSIS_MODELS',),
                'image_from': ('IMAGE',),
                'expand': ('BOOLEAN', {'default': True}),
                'simple_angle': ('BOOLEAN', {'default': False}),
            },
            'optional': {
                'image_to': ('IMAGE',),
            },
        }

    RETURN_TYPES = ('IMAGE', 'FLOAT', 'FLOAT')
    RETURN_NAMES = ('aligned_image', 'rotation_angle', 'inverse_rotation_angle')
    FUNCTION = 'align'
    CATEGORY = _CATEGORY
    DESCRIPTION = '根据图像中的人脸进行旋转对齐'

    def align(self, analysis_models, image_from, expand=True, simple_angle=False, image_to=None):
        source_image = tensor2np(image_from[0])

        def find_nearest_angle(angle):
            angles = [-360, -270, -180, -90, 0, 90, 180, 270, 360]
            normalized_angle = angle % 360
            return min(angles, key=lambda x: min(abs(x - normalized_angle), abs(x - normalized_angle - 360), abs(x - normalized_angle + 360)))

        def calculate_angle(shape):
            left_eye, right_eye = shape[:2]
            return float(np.degrees(np.arctan2(left_eye[1] - right_eye[1], left_eye[0] - right_eye[0])))

        def detect_face(img, flip=False):
            if flip:
                img = Image.fromarray(img).rotate(180, expand=expand, resample=Image.Resampling.BICUBIC)
                img = np.array(img)
            face_shape = analysis_models.get_keypoints(img)
            return face_shape, img

        # 尝试检测人脸,如果失败则翻转图像再次尝试
        face_shape, processed_image = detect_face(source_image)
        if face_shape is None:
            face_shape, processed_image = detect_face(source_image, flip=True)
            is_flipped = True
            if face_shape is None:
                raise Exception('无法在图像中检测到人脸。')
        else:
            is_flipped = False

        rotation_angle = calculate_angle(face_shape)
        if simple_angle:
            rotation_angle = find_nearest_angle(rotation_angle)

        # 如果提供了目标图像,计算相对旋转角度
        if image_to is not None:
            target_shape = analysis_models.get_keypoints(tensor2np(image_to[0]))
            if target_shape is not None:
                print(f'目标图像人脸关键点: {target_shape}')
                rotation_angle -= calculate_angle(target_shape)

        original_image = tensor2np(image_from[0]) if not is_flipped else processed_image

        rows, cols = original_image.shape[:2]
        M = cv2.getRotationMatrix2D((cols / 2, rows / 2), rotation_angle, 1)

        if expand:
            # 计算新的边界以确保整个图像都包含在内
            cos = np.abs(M[0, 0])
            sin = np.abs(M[0, 1])
            new_cols = int((rows * sin) + (cols * cos))
            new_rows = int((rows * cos) + (cols * sin))
            M[0, 2] += (new_cols / 2) - cols / 2
            M[1, 2] += (new_rows / 2) - rows / 2
            new_size = (new_cols, new_rows)
        else:
            new_size = (cols, rows)

        aligned_image = cv2.warpAffine(original_image, M, new_size, flags=cv2.INTER_LINEAR)

        # 转换为张量

        aligned_image_tensor = np2tensor(aligned_image).unsqueeze(0)

        if is_flipped:
            rotation_angle += 180

        return (aligned_image_tensor, rotation_angle, 360 - rotation_angle)


class FaceCutout:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            'required': {
                'analysis_models': ('ANALYSIS_MODELS',),
                'image': ('IMAGE',),
                'padding': ('INT', {'default': 0, 'min': 0, 'max': 4096, 'step': 1}),
                'padding_percent': ('FLOAT', {'default': 0.1, 'min': 0.0, 'max': 2.0, 'step': 0.01}),
                'face_index': ('INT', {'default': -1, 'min': -1, 'max': 4096, 'step': 1}),
                'rescale_mode': (['sdxl', 'sd15', 'sdxl+', 'sd15+', 'none', 'custom'],),
                'custom_megapixels': ('FLOAT', {'default': 1.0, 'min': 0.01, 'max': 16.0, 'step': 0.01}),
            },
        }

    RETURN_TYPES = ('IMAGE', 'BOUNDINGINFO')
    RETURN_NAMES = ('cutout_image', 'bounding_info')
    FUNCTION = 'execute'
    CATEGORY = _CATEGORY
    DESCRIPTION = '切下人脸并进行缩放'

    def execute(self, analysis_models, image, padding, padding_percent, rescale_mode, custom_megapixels, face_index=-1):
        target_size = self._get_target_size(rescale_mode, custom_megapixels)

        img = image[0]

        pil_image = tensor2pil(img)

        faces, x_coords, y_coords, widths, heights = analysis_models.get_bbox(pil_image, padding, padding_percent)

        face_count = len(faces)
        if face_count == 0:
            raise Exception('未在图像中检测到人脸。')

        if face_index == -1:
            face_index = 0

        face_index = min(face_index, face_count - 1)

        face = faces[face_index]
        x = x_coords[face_index]
        y = y_coords[face_index]
        w = widths[face_index]
        h = heights[face_index]

        scale_factor = 1

        if target_size > 0:
            scale_factor = math.sqrt(target_size / (w * h))
            new_width = round(w * scale_factor)
            new_height = round(h * scale_factor)
            face = self._rescale_image(face, new_width, new_height)

        bounding_info = {
            'x': x,
            'y': y,
            'width': w,
            'height': h,
            'scale_factor': scale_factor,
        }

        return (face, bounding_info)

    @staticmethod
    def _get_target_size(rescale_mode, custom_megapixels):
        if rescale_mode == 'custom':
            return int(custom_megapixels * 1024 * 1024)
        size_map = {'sd15': 512 * 512, 'sd15+': 512 * 768, 'sdxl': 1024 * 1024, 'sdxl+': 1024 * 1280, 'none': -1}
        return size_map.get(rescale_mode, -1)

    @staticmethod
    def _rescale_image(image, width, height):
        samples = image.movedim(-1, 1)
        resized = common_upscale(samples, width, height, 'lanczos', 'disabled')
        return resized.movedim(1, -1)


class FacePaste:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            'required': {
                'destination': ('IMAGE',),
                'source': ('IMAGE',),
                'bounding_info': ('BOUNDINGINFO',),
                'margin': ('INT', {'default': 0, 'min': 0, 'max': 4096, 'step': 1}),
                'margin_percent': ('FLOAT', {'default': 0.10, 'min': 0.0, 'max': 2.0, 'step': 0.05}),
                'blur_radius': ('INT', {'default': 10, 'min': 0, 'max': 4096, 'step': 1}),
            },
        }

    RETURN_TYPES = ('IMAGE', 'MASK')
    RETURN_NAMES = ('image', 'mask')
    FUNCTION = 'paste'
    CATEGORY = _CATEGORY
    DESCRIPTION = '将人脸图像贴回原图'

    @staticmethod
    def create_soft_edge_mask(size, margin, blur_radius):
        mask = Image.new('L', size, 255)
        draw = ImageDraw.Draw(mask)
        draw.rectangle(((0, 0), size), outline='black', width=margin)
        return mask.filter(ImageFilter.GaussianBlur(blur_radius))

    def paste(self, destination, source, bounding_info, margin, margin_percent, blur_radius):
        if not bounding_info:
            return destination, None

        destination = tensor2pil(destination[0])
        source = tensor2pil(source[0])

        if bounding_info.get('scale_factor', 1) != 1:
            new_size = (bounding_info['width'], bounding_info['height'])
            source = source.resize(new_size, resample=Image.Resampling.LANCZOS)

        ref_size = max(source.width, source.height)
        margin_border = int(ref_size * margin_percent) + margin

        mask = self.create_soft_edge_mask(source.size, margin_border, blur_radius)

        position = (bounding_info['x'], bounding_info['y'])
        destination.paste(source, position, mask)

        return pil2tensor(destination), pil2mask(mask)


class ExtractBoundingBox:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            'required': {
                'bounding_info': ('BOUNDINGINFO',),
            },
        }

    RETURN_TYPES = ('INT', 'INT', 'INT', 'INT')
    RETURN_NAMES = ('x', 'y', 'width', 'height')
    FUNCTION = 'extract'
    CATEGORY = _CATEGORY
    DESCRIPTION = '从边界框信息中提取坐标和尺寸'

    def extract(self, bounding_info):
        return (bounding_info['x'], bounding_info['y'], bounding_info['width'], bounding_info['height'])


FACE_ANALYSIS_CLASS_MAPPINGS = {
    'GeneratePreciseFaceMask-': GeneratePreciseFaceMask,
    'AlignImageByFace-': AlignImageByFace,
    'FaceCutout-': FaceCutout,
    'FacePaste-': FacePaste,
    'ExtractBoundingBox-': ExtractBoundingBox,
}

FACE_ANALYSIS_NAME_MAPPINGS = {
    'GeneratePreciseFaceMask-': 'Generate PreciseFaceMask',
    'AlignImageByFace-': 'Align Image By Face',
    'FaceCutout-': 'Face Cutout',
    'FacePaste-': 'Face Paste',
    'ExtractBoundingBox-': 'Extract Bounding Box',
}