File size: 7,220 Bytes
f2dbf59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import cv2
import numpy as np
import torch
import os
import tempfile
import warnings
from contextlib import suppress
from pathlib import Path
from huggingface_hub import constants, hf_hub_download
from ast import literal_eval

TEMP_DIR = tempfile.gettempdir()
ANNOTATOR_CKPTS_PATH = os.path.join(Path(__file__).parents[2], 'ckpts')
USE_SYMLINKS = False


BIGMIN = -(2**53-1)
BIGMAX = (2**53-1)

DIMMAX = 8192

try:
    ANNOTATOR_CKPTS_PATH = os.environ['AUX_ANNOTATOR_CKPTS_PATH']
except:
    warnings.warn("Custom pressesor model path not set successfully.")
    pass

try:
    USE_SYMLINKS = literal_eval(os.environ['AUX_USE_SYMLINKS'])
except:
    warnings.warn("USE_SYMLINKS not set successfully. Using default value: False to download models.")
    pass

try:
    TEMP_DIR = os.environ['AUX_TEMP_DIR']
    if len(TEMP_DIR) >= 60:
        warnings.warn(f"custom temp dir is too long. Using default")
        TEMP_DIR = tempfile.gettempdir()
except:
    warnings.warn(f"custom temp dir not set successfully")
    pass

here = Path(__file__).parent.resolve()

def safer_memory(x):
    # Fix many MAC/AMD problems
    return np.ascontiguousarray(x.copy()).copy()

UPSCALE_METHODS = ["INTER_NEAREST", "INTER_LINEAR", "INTER_AREA", "INTER_CUBIC", "INTER_LANCZOS4"]
def get_upscale_method(method_str):
    assert method_str in UPSCALE_METHODS, f"Method {method_str} not found in {UPSCALE_METHODS}"
    return getattr(cv2, method_str)

def pad64(x):
    return int(np.ceil(float(x) / 64.0) * 64 - x)

def resize_image_with_pad(input_image, resolution, upscale_method = "", skip_hwc3=False, mode='edge'):
    if skip_hwc3:
        img = input_image
    else:
        img = HWC3(input_image)
    H_raw, W_raw, _ = img.shape
    if resolution == 0:
        return img, lambda x: x
    k = float(resolution) / float(min(H_raw, W_raw))
    H_target = int(np.round(float(H_raw) * k))
    W_target = int(np.round(float(W_raw) * k))
    img = cv2.resize(img, (W_target, H_target), interpolation=get_upscale_method(upscale_method) if k > 1 else cv2.INTER_AREA)
    H_pad, W_pad = pad64(H_target), pad64(W_target)
    img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode=mode)

    def remove_pad(x):
        return safer_memory(x[:H_target, :W_target, ...])

    return safer_memory(img_padded), remove_pad
    
    
def common_input_validate(input_image, output_type, **kwargs):
    if "img" in kwargs:
            warnings.warn("img is deprecated, please use `input_image=...` instead.", DeprecationWarning)
            input_image = kwargs.pop("img")
    
    if "return_pil" in kwargs:
            warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning)
            output_type = "pil" if kwargs["return_pil"] else "np"
    
    if type(output_type) is bool:
        warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions")
        if output_type:
            output_type = "pil"

    if input_image is None:
        raise ValueError("input_image must be defined.")

    if not isinstance(input_image, np.ndarray):
        input_image = np.array(input_image, dtype=np.uint8)
        output_type = output_type or "pil"
    else:
        output_type = output_type or "np"
    
    return (input_image, output_type)

def custom_hf_download(pretrained_model_or_path, filename, cache_dir=TEMP_DIR, ckpts_dir=ANNOTATOR_CKPTS_PATH, subfolder=str(""), use_symlinks=USE_SYMLINKS, repo_type="model"):

    print(f'cache_dir: {cache_dir}')
    print(f'ckpts_dir: {ckpts_dir}')
    print(f'use_symlinks: {use_symlinks}')
    local_dir = os.path.join(ckpts_dir, pretrained_model_or_path)
    model_path = os.path.join(local_dir, *subfolder.split('/'), filename)

    if len(str(model_path)) >= 255:
        warnings.warn(f"Path {model_path} is too long, \n please change annotator_ckpts_path in config.yaml")

    if not os.path.exists(model_path):
        print(f"Failed to find {model_path}.\n Downloading from huggingface.co")
        print(f"cacher folder is {cache_dir}, you can change it by custom_tmp_path in config.yaml")
        if use_symlinks:
            cache_dir_d = constants.HF_HUB_CACHE    # use huggingface newer env variables `HF_HUB_CACHE`
            if cache_dir_d is None:
                import platform
                if platform.system() == "Windows":
                    cache_dir_d = os.path.join(os.getenv("USERPROFILE"), ".cache", "huggingface", "hub")
                else:
                    cache_dir_d = os.path.join(os.getenv("HOME"), ".cache", "huggingface", "hub")
            try:
                # test_link
                Path(cache_dir_d).mkdir(parents=True, exist_ok=True)
                Path(ckpts_dir).mkdir(parents=True, exist_ok=True)
                (Path(cache_dir_d) / f"linktest_{filename}.txt").touch()
                # symlink instead of link avoid `invalid cross-device link` error.
                os.symlink(os.path.join(cache_dir_d, f"linktest_{filename}.txt"), os.path.join(ckpts_dir, f"linktest_{filename}.txt"))
                print("Using symlinks to download models. \n",\
                      "Make sure you have enough space on your cache folder. \n",\
                      "And do not purge the cache folder after downloading.\n",\
                      "Otherwise, you will have to re-download the models every time you run the script.\n",\
                      "You can use USE_SYMLINKS: False in config.yaml to avoid this behavior.")
            except:
                print("Maybe not able to create symlink. Disable using symlinks.")
                use_symlinks = False
                cache_dir_d = os.path.join(cache_dir, "ckpts", pretrained_model_or_path)
            finally:    # always remove test link files
                with suppress(FileNotFoundError):
                    os.remove(os.path.join(ckpts_dir, f"linktest_{filename}.txt"))
                    os.remove(os.path.join(cache_dir_d, f"linktest_{filename}.txt"))
        else:
            cache_dir_d = os.path.join(cache_dir, "ckpts", pretrained_model_or_path)

        model_path = hf_hub_download(repo_id=pretrained_model_or_path,
            cache_dir=cache_dir_d,
            local_dir=local_dir,
            subfolder=subfolder,
            filename=filename,
            local_dir_use_symlinks=use_symlinks,
            resume_download=True,
            etag_timeout=100,
            repo_type=repo_type
        )
        if not use_symlinks:
            try:
                import shutil
                shutil.rmtree(os.path.join(cache_dir, "ckpts"))
            except Exception as e :
                print(e)

    print(f"model_path is {model_path}")

    return model_path


def HWC3(x):
    assert x.dtype == np.uint8
    if x.ndim == 2:
        x = x[:, :, None]
    assert x.ndim == 3
    H, W, C = x.shape
    assert C == 1 or C == 3 or C == 4
    if C == 3:
        return x
    if C == 1:
        return np.concatenate([x, x, x], axis=2)
    if C == 4:
        color = x[:, :, 0:3].astype(np.float32)
        alpha = x[:, :, 3:4].astype(np.float32) / 255.0
        y = color * alpha + 255.0 * (1.0 - alpha)
        y = y.clip(0, 255).astype(np.uint8)
        return y