File size: 8,698 Bytes
334ba26
 
dacc7c0
 
0e313c1
 
 
334ba26
 
 
0e313c1
5e054cf
dacc7c0
 
 
0e313c1
dacc7c0
 
 
 
a0cc511
fa97be4
dacc7c0
334ba26
dacc7c0
 
334ba26
 
dacc7c0
 
 
 
 
 
334ba26
 
dacc7c0
 
 
 
 
0e313c1
dacc7c0
0e313c1
 
 
 
 
9164577
dacc7c0
 
 
 
 
 
0e313c1
dacc7c0
334ba26
 
 
 
 
 
 
 
 
 
dacc7c0
 
334ba26
 
dacc7c0
334ba26
dacc7c0
334ba26
 
 
dacc7c0
 
334ba26
 
 
 
 
 
 
 
 
dacc7c0
334ba26
ebca5ff
 
dacc7c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6396eb
 
 
0e313c1
674b44a
dacc7c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f710ca
dacc7c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e5e00a
 
dacc7c0
 
a0cc511
 
 
 
 
 
 
9164577
1e5e00a
 
a0cc511
 
 
 
 
 
 
9164577
dacc7c0
f523b13
 
 
dacc7c0
 
 
 
 
 
 
 
 
0e313c1
dacc7c0
 
 
287d313
 
0e313c1
 
 
dacc7c0
0e313c1
dacc7c0
 
f523b13
0e313c1
 
dacc7c0
 
 
 
f523b13
 
0e313c1
dacc7c0
 
 
0e313c1
 
dacc7c0
0e313c1
287d313
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import nltk
import numpy as np
import tflearn
import tensorflow
import random
import json
import pickle
import gradio as gr
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import torch
import requests
import pandas as pd
import time
from bs4 import BeautifulSoup
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
import chromedriver_autoinstaller
import os
import tempfile

# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')

# Initialize the stemmer
stemmer = LancasterStemmer()

# Load intents.json
try:
    with open("intents.json") as file:
        data = json.load(file)
except FileNotFoundError:
    raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.")

# Load preprocessed data from pickle
try:
    with open("data.pickle", "rb") as f:
        words, labels, training, output = pickle.load(f)
except FileNotFoundError:
    raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.")

# Build the model structure
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)

# Load the trained model
model = tflearn.DNN(net)
try:
    model.load("MentalHealthChatBotmodel.tflearn")
except FileNotFoundError:
    raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")

# Function to process user input into a bag-of-words format
def bag_of_words(s, words):
    bag = [0 for _ in range(len(words))]
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

# Chat function (Chatbot)
def chat(message, history):
    history = history or []
    message = message.lower()
    
    try:
        # Predict the tag
        results = model.predict([bag_of_words(message, words)])
        results_index = np.argmax(results)
        tag = labels[results_index]

        # Match tag with intent and choose a random response
        for tg in data["intents"]:
            if tg['tag'] == tag:
                responses = tg['responses']
                response = random.choice(responses)
                break
        else:
            response = "I'm sorry, I didn't understand that. Could you please rephrase?"
    except Exception as e:
        response = f"An error occurred: {str(e)}"
    
    history.append((message, response))
    return history, history

# Sentiment Analysis (Code 2)
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")

def analyze_sentiment(user_input):
    inputs = tokenizer_sentiment(user_input, return_tensors="pt")
    with torch.no_grad():
        outputs = model_sentiment(**inputs)
    predicted_class = torch.argmax(outputs.logits, dim=1).item()
    sentiment = ["Negative", "Neutral", "Positive"][predicted_class]
    return f"**Predicted Sentiment:** {sentiment}"

# Emotion Detection (Code 3)
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)

def detect_emotion(user_input):
    result = pipe(user_input)
    emotion = result[0]['label']
    return emotion

def provide_suggestions(emotion):
    suggestions = ""
    if emotion == 'joy':
        suggestions += "You're feeling happy! Keep up the great mood!"
    elif emotion == 'anger':
        suggestions += "You're feeling angry. It's okay to feel this way."
    elif emotion == 'fear':
        suggestions += "You're feeling fearful. Take a moment to breathe."
    elif emotion == 'sadness':
        suggestions += "You're feeling sad. It's okay to take a break."
    elif emotion == 'surprise':
        suggestions += "You're feeling surprised. It's okay to feel neutral!"
    return suggestions

# Google Places API (Code 4)
api_key = "GOOGLE_API_KEY"  # Replace with your API key

def get_places_data(query, location, radius, api_key, next_page_token=None):
    url = "https://maps.googleapis.com/maps/api/place/textsearch/json"
    params = {
        "query": query,
        "location": location,
        "radius": radius,
        "key": api_key
    }
    if next_page_token:
        params["pagetoken"] = next_page_token
    response = requests.get(url, params=params)
    return response.json() if response.status_code == 200 else None

def get_all_places(query, location, radius, api_key):
    all_results = []
    next_page_token = None
    while True:
        data = get_places_data(query, location, radius, api_key, next_page_token)
        if data:
            results = data.get('results', [])
            for place in results:
                place_id = place.get("place_id")
                name = place.get("name")
                address = place.get("formatted_address")
                website = place.get("website", "Not available")
                all_results.append([name, address, website])
            next_page_token = data.get('next_page_token')
            if not next_page_token:
                break
        else:
            break
    return all_results

# Search Wellness Professionals
def search_wellness_professionals(location):
    query = "therapist OR counselor OR mental health professional"
    radius = 50000
    google_places_data = get_all_places(query, location, radius, api_key)
    
    # Check if data is found
    if google_places_data:
        df = pd.DataFrame(google_places_data, columns=["Name", "Address", "Website"])
        
        # Create a temporary file to store the CSV
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".csv")
        df.to_csv(temp_file, index=False)
        temp_file.close()  # Close the file so that Gradio can download it
        
        return temp_file.name  # Return the path to the temporary file
    else:
        # If no data found, return a dummy CSV with a message
        dummy_df = pd.DataFrame([["No data found.", "", ""]], columns=["Name", "Address", "Website"])
        
        # Create a temporary file for the dummy data
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".csv")
        dummy_df.to_csv(temp_file, index=False)
        temp_file.close()  # Close the file
        
        return temp_file.name  # Return the path to the dummy file

# Gradio Interface
def gradio_interface(message, location, state):
    history = state or []  # If state is None, initialize it as an empty list
    
    # Stage 1: Mental Health Chatbot
    history, _ = chat(message, history)
    
    # Stage 2: Sentiment Analysis
    sentiment = analyze_sentiment(message)
    
    # Stage 3: Emotion Detection and Suggestions
    emotion = detect_emotion(message)
    suggestions = provide_suggestions(emotion)
    
    # Stage 4: Search for Wellness Professionals
    wellness_results = search_wellness_professionals(location)
    
    # Return the 6 values required by Gradio
    return history, sentiment, emotion, suggestions, wellness_results, history  # Last 'history' is for state

# Gradio interface setup
iface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Textbox(label="Enter your message", placeholder="How are you feeling today?"),
        gr.Textbox(label="Enter your location (e.g., Hawaii, Oahu)", placeholder="Your location"),
        gr.State()  # One state input
    ],
    outputs=[
        gr.Chatbot(label="Chat History"),
        gr.Textbox(label="Sentiment Analysis"),
        gr.Textbox(label="Detected Emotion"),
        gr.Textbox(label="Suggestions"),
        gr.File(label="Download Wellness Professionals CSV"),
        gr.State()  # One state output
    ],
    allow_flagging="never",
    title="Mental Wellbeing App with AI Assistance",
    description="This app provides a mental health chatbot, sentiment analysis, emotion detection, and wellness professional search functionality.",
)

# Launch Gradio interface
if __name__ == "__main__":
    iface.launch(debug=True, share=True)  # Set share=True to create a public link