Spaces:
Sleeping
Sleeping
File size: 19,464 Bytes
4368f96 6191c40 4214099 0f50d71 4368f96 6191c40 9c66c5f 4368f96 17f9f26 0285b1b faf39dd d4e1309 faf39dd 17f9f26 0285b1b faf39dd 919f81c 17f9f26 faf39dd 17f9f26 919f81c 17f9f26 0285b1b faf39dd 919f81c 17f9f26 0285b1b 919f81c 17f9f26 6148c3d 17f9f26 6148c3d 17f9f26 919f81c 17f9f26 6148c3d 17f9f26 6148c3d 919f81c 17f9f26 919f81c 17f9f26 0285b1b 919f81c 17f9f26 0285b1b d4e1309 919f81c 17f9f26 d4e1309 919f81c 17f9f26 919f81c 17f9f26 d4e1309 0285b1b 4368f96 0285b1b 4368f96 8fbb8bd 4368f96 8fbb8bd 4368f96 ce79e89 4368f96 ce79e89 7dd5b9d 8fbb8bd 209ed30 8fbb8bd 209ed30 4368f96 006b455 ce79e89 6148c3d 4368f96 ce79e89 6148c3d 4368f96 ce79e89 4368f96 6148c3d 4368f96 ce79e89 6148c3d 4368f96 6148c3d 4368f96 4d8736d 4368f96 e7dfb7a 4368f96 3e83fd3 e7dfb7a 4368f96 4d8736d 4368f96 4214099 4368f96 4214099 4368f96 0f50d71 6b9dfec 0f50d71 6b9dfec 4d8736d 4214099 4368f96 4214099 4368f96 3e83fd3 4214099 4368f96 e7dfb7a 4214099 4368f96 3150019 6148c3d 919f81c 6148c3d 17f9f26 4214099 6148c3d 4368f96 4214099 1f24f10 4214099 38b5884 3150019 919f81c 4214099 17f9f26 8fbb8bd 3150019 8fbb8bd 3150019 c30135d 53c1d8d 0285b1b 3e83fd3 0285b1b 4368f96 3e83fd3 4368f96 33982da 6191c40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
import os
import tempfile
import gradio as gr
import openai
from typing import Optional, List
import hashlib
import base64
import json
import time
from dotenv import load_dotenv
from gtts import gTTS
import io
import numpy as np
# Load environment variables
load_dotenv()
# Initialize OpenAI client with error handling
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
raise ValueError("OPENAI_API_KEY environment variable is not set")
# Initialize OpenAI client with older API syntax
openai.api_key = api_key
# Custom CSS for a beautiful, modern look
custom_css = """
html, body, .gradio-container {
height: 100vh !important;
min-height: 100vh !important;
max-width: 100vw !important;
margin: 0 !important;
padding: 0 !important;
font-family: 'Inter', 'Segoe UI', Arial, sans-serif;
background: #f4f7fb;
color: #222;
}
.centered-main {
display: flex;
flex-direction: column;
align-items: center;
justify-content: flex-start;
min-height: 100vh;
width: 100vw;
padding-top: 32px;
}
.compact-box {
background: #fff;
border-radius: 18px;
box-shadow: 0 4px 24px rgba(0, 60, 180, 0.07), 0 1.5px 4px rgba(0,0,0,0.04);
padding: 32px 32px 20px 32px;
margin-bottom: 32px;
width: 100%;
max-width: 600px;
margin-left: auto;
margin-right: auto;
border: 1.5px solid #e3e8f0;
}
.section-title {
font-size: 1.25rem;
font-weight: 700;
margin-bottom: 18px;
color: #1a237e;
letter-spacing: 0.01em;
}
.upload-btn, .send-btn, .audio-btn, .reset-btn {
background: linear-gradient(135deg, #1976D2 0%, #00bcd4 100%);
color: white;
border: none;
padding: 12px 28px;
border-radius: 24px;
cursor: pointer;
font-weight: 600;
font-size: 16px;
margin-top: 10px;
margin-bottom: 10px;
transition: all 0.2s;
box-shadow: 0 2px 8px rgba(25, 118, 210, 0.08);
}
.upload-btn:hover, .send-btn:hover, .audio-btn:hover, .reset-btn:hover {
background: linear-gradient(135deg, #00bcd4 0%, #1976D2 100%);
box-shadow: 0 4px 16px rgba(0, 188, 212, 0.13);
}
.gradio-chatbot {
border-radius: 14px !important;
border: 1.5px solid #e3e8f0 !important;
background: #f8fafc !important;
padding: 12px !important;
min-height: 350px !important;
max-height: 400px !important;
overflow-y: auto !important;
margin-bottom: 10px;
}
.gradio-audio {
margin-top: 12px;
margin-bottom: 12px;
}
.textbox {
border-radius: 12px !important;
border: 1.5px solid #e3e8f0 !important;
padding: 12px !important;
font-size: 16px !important;
margin-bottom: 10px;
background: #f8fafc !important;
color: #222 !important;
}
.textbox:focus {
border-color: #1976D2 !important;
box-shadow: 0 0 0 2px rgba(25, 118, 210, 0.13) !important;
}
.status-text {
color: #1976D2;
font-size: 15px;
margin-top: 10px;
font-weight: 500;
background: #e3f2fd;
border-radius: 8px;
padding: 8px 12px;
}
/* File upload area */
input[type="file"]::-webkit-file-upload-button {
background: #1976D2;
color: #fff;
border: none;
border-radius: 8px;
padding: 8px 18px;
font-weight: 600;
cursor: pointer;
}
input[type="file"]::-webkit-file-upload-button:hover {
background: #00bcd4;
}
/* Only one main scroll */
body, .gradio-container, #root, #app {
overflow: auto !important;
height: 100vh !important;
}
#component-0, #component-1, #component-2, .chatbot, .chat-container {
overflow: visible !important;
height: auto !important;
max-height: none !important;
}
"""
# Custom audio recorder component with improved styling
def create_audio_recorder():
return gr.HTML("""
<div class="audio-recorder">
<button id="recordButton" class="record-button">
<span class="record-icon">π€</span>
<span class="record-text">Start Recording</span>
</button>
<div id="recordingStatus" class="status-text"></div>
<audio id="audioPlayback" controls style="display: none; margin-top: 10px;"></audio>
</div>
<script>
let mediaRecorder;
let audioChunks = [];
let isRecording = false;
const recordButton = document.getElementById('recordButton');
const recordingStatus = document.getElementById('recordingStatus');
const audioPlayback = document.getElementById('audioPlayback');
recordButton.addEventListener('click', async () => {
if (!isRecording) {
try {
const stream = await navigator.mediaDevices.getUserMedia({ audio: true });
mediaRecorder = new MediaRecorder(stream);
audioChunks = [];
mediaRecorder.ondataavailable = (event) => {
audioChunks.push(event.data);
};
mediaRecorder.onstop = () => {
const audioBlob = new Blob(audioChunks, { type: 'audio/wav' });
const audioUrl = URL.createObjectURL(audioBlob);
audioPlayback.src = audioUrl;
audioPlayback.style.display = 'block';
const reader = new FileReader();
reader.readAsDataURL(audioBlob);
reader.onloadend = () => {
const base64Audio = reader.result;
window.parent.postMessage({
type: 'audio_data',
data: base64Audio
}, '*');
};
};
mediaRecorder.start();
isRecording = true;
recordButton.classList.add('recording');
recordButton.querySelector('.record-text').textContent = 'Stop Recording';
recordingStatus.textContent = 'Recording...';
} catch (err) {
console.error('Error accessing microphone:', err);
recordingStatus.textContent = 'Error accessing microphone';
}
} else {
mediaRecorder.stop();
isRecording = false;
recordButton.classList.remove('recording');
recordButton.querySelector('.record-text').textContent = 'Start Recording';
recordingStatus.textContent = 'Recording saved';
}
});
</script>
""")
class AdvancedRAG:
def __init__(self):
self.thread_id: Optional[str] = None
self.file_ids: List[str] = []
self.assistant_id: Optional[str] = os.getenv("ASSISTANT_ID")
if hasattr(self, 'vector_store_id'):
self.vector_store_id = None
def create_thread(self) -> str:
thread = openai.beta.threads.create()
self.thread_id = thread.id
return self.thread_id
def upload_document(self, file) -> str:
# Delete previous file from OpenAI if it exists
if self.file_ids:
for file_id in self.file_ids:
try:
openai.files.delete(file_id)
except Exception as e:
print(f"Warning: Could not delete file {file_id}: {e}")
self.thread_id = None
self.file_ids = []
if hasattr(self, 'vector_store_id'):
try:
openai.beta.vector_stores.delete(self.vector_store_id)
except Exception as e:
print(f"Warning: Could not delete vector store: {e}")
self.vector_store_id = None
# Wait a moment to ensure deletion is processed
time.sleep(2)
# Upload new file
if not file:
raise Exception("No file uploaded.")
filename = 'uploaded_file.pdf'
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(filename)[1]) as tmp:
tmp.write(file)
tmp.flush()
with open(tmp.name, "rb") as file_obj:
file_obj = openai.files.create(
file=file_obj,
purpose="assistants"
)
self.file_ids = [file_obj.id]
# Create a new thread for the new document
thread = openai.beta.threads.create()
self.thread_id = thread.id
# Send a message in the new thread with only the new file as an attachment
openai.beta.threads.messages.create(
thread_id=self.thread_id,
role="user",
content="I have uploaded a document. Please analyze it.",
attachments=[{"file_id": self.file_ids[0], "tools": [{"type": "file_search"}]}]
)
return self.file_ids[0]
def ask_question(self, question: str) -> str:
try:
if not self.thread_id:
self.create_thread()
# Add the question to the thread
openai.beta.threads.messages.create(
thread_id=self.thread_id,
role="user",
content=question
)
# Create a run
run = openai.beta.threads.runs.create(
thread_id=self.thread_id,
assistant_id=self.assistant_id
)
# Wait for the run to complete
waited = 0
while True:
run_status = openai.beta.threads.runs.retrieve(
thread_id=self.thread_id,
run_id=run.id
)
if run_status.status == 'completed':
break
elif run_status.status == 'failed':
raise Exception("Run failed")
time.sleep(0.2)
waited += 0.2
if waited > 60:
raise Exception("Run timed out after 60 seconds.")
# Get the latest message
messages = openai.beta.threads.messages.list(
thread_id=self.thread_id,
order='desc',
limit=1
)
if not messages.data:
return "No response received from the assistant."
return messages.data[0].content[0].text.value
except Exception as e:
return f"[Error: {str(e)}]"
def transcribe_audio(self, audio_file):
try:
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
tmp.write(audio_file.read())
tmp.flush()
tmp_path = tmp.name
with open(tmp_path, "rb") as audio:
transcript = openai.audio.transcriptions.create(
model="whisper-1",
file=audio,
language="en"
)
os.remove(tmp_path)
return transcript.text
except Exception as e:
return f"[Error transcribing audio: {str(e)}]"
# Initialize RAG system
rag = AdvancedRAG()
def process_file(file):
if file is None:
return "Please upload a file first."
try:
rag.upload_document(file)
return "File uploaded successfully! You can now ask questions about the document."
except Exception as e:
return f"Error uploading file: {str(e)}"
def process_question(question, history):
# Prevent sending empty messages
if not question or not question.strip():
return "", history, "", None
if not rag.thread_id:
return "Please upload a document first.", history, "", None
try:
response = rag.ask_question(question)
history.append({"role": "user", "content": question})
history.append({"role": "assistant", "content": response})
return "", history, "", None
except Exception as e:
history.append({"role": "assistant", "content": f"Error: {str(e)}"})
return "", history, "", None
def synthesize_text(text):
try:
tts = gTTS(text)
fp = io.BytesIO()
tts.write_to_fp(fp)
fp.seek(0)
return fp.read()
except Exception as e:
return None
def process_voice_note(audio_file, history):
if audio_file is None:
return "Please record or upload an audio file.", history, "", None, None
try:
transcript = None
# If audio_file is a string (filepath), open it as a file
if isinstance(audio_file, str):
with open(audio_file, "rb") as f:
transcript = rag.transcribe_audio(f)
# If audio_file is a tuple (sample_rate, np.ndarray), save as temp WAV and open
elif isinstance(audio_file, tuple) and isinstance(audio_file[1], np.ndarray):
import soundfile as sf
sample_rate, audio_data = audio_file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
sf.write(tmp.name, audio_data, sample_rate)
tmp.flush()
with open(tmp.name, "rb") as f:
transcript = rag.transcribe_audio(f)
else:
transcript = rag.transcribe_audio(audio_file)
if not transcript or not str(transcript).strip():
history.append({"role": "user", "content": "π€ [No audio detected or transcription failed]"})
history.append({"role": "assistant", "content": "Sorry, I couldn't understand the audio. Please try again."})
return "", history, "", None, None
if not rag.thread_id:
return "Please upload a document first.", history, "", None, None
response = rag.ask_question(transcript)
history.append({"role": "user", "content": f"π€ {transcript}"})
history.append({"role": "assistant", "content": response})
tts_audio = synthesize_text(response)
return "", history, "", None, tts_audio
except Exception as e:
history.append({"role": "user", "content": f"π€ [Error transcribing audio: {str(e)}]"})
history.append({"role": "assistant", "content": "It seems there was an error while transcribing audio due to a technical issue. If there's anything specific from the document or any other questions you have regarding the content, please let me know, and I can assist you with that information."})
return "", history, "", None, None
def reset_all():
rag.thread_id = None
if hasattr(rag, 'file_ids'):
rag.file_ids = []
if hasattr(rag, 'vector_store_id'):
rag.vector_store_id = None
return "", [], "", None, None
# Create Gradio interface with improved layout
with gr.Blocks(css=custom_css, title="Document Q&A System") as demo:
gr.Markdown("""
# <span style='color:#1976D2;'>Document Q&A System</span>
<div style='text-align:center; color:#1976D2; margin-bottom:18px;'>Upload a document, record your voice, and chat!</div>
""")
chatbot = gr.Chatbot(height=400, elem_classes="gradio-chatbot", label=None, type="messages")
audio_input = gr.Audio(type="filepath", label="Record or Upload Audio", elem_classes="gradio-audio", visible=False)
tts_output = gr.Audio(label="Assistant Voice Reply", interactive=False, visible=False)
with gr.Row():
# Left: Document Q&A controls
with gr.Column(scale=1, min_width=350):
with gr.Group(elem_classes="compact-box"):
gr.Markdown("<div class='section-title'>Document Q&A Controls</div>")
file_input = gr.File(label="Upload Document", file_types=[".pdf", ".txt", ".doc", ".docx"], file_count="single", type="binary", elem_classes="upload-btn")
mic_btn = gr.Button("π€ Record Voice", elem_classes="audio-btn")
audio_input
send_voice_btn = gr.Button("Send Voice Note", elem_classes="send-btn", visible=False)
reset_btn = gr.Button("Reset Chat & Upload New Document", elem_classes="reset-btn")
file_output = gr.Textbox(label="Upload Status", interactive=False, elem_classes="textbox")
question = gr.Textbox(label="Type your question and press Enter", placeholder="Ask a question about your document...", elem_classes="textbox")
file_input.change(process_file, file_input, file_output)
def reset_all():
rag.thread_id = None
if hasattr(rag, 'file_ids'):
rag.file_ids = []
if hasattr(rag, 'vector_store_id'):
rag.vector_store_id = None
return "", [], "", None, None
reset_btn.click(reset_all, None, [file_output, chatbot, question, audio_input, tts_output])
def show_audio():
return {audio_input: gr.update(visible=True), send_voice_btn: gr.update(visible=True)}
mic_btn.click(show_audio, None, [audio_input, send_voice_btn])
def hide_audio():
return {audio_input: gr.update(visible=False), send_voice_btn: gr.update(visible=False)}
send_voice_btn.click(process_voice_note, [audio_input, chatbot], [file_output, chatbot, question, audio_input, tts_output])
send_voice_btn.click(hide_audio, None, [audio_input, send_voice_btn])
question.submit(process_question, [question, chatbot], [question, chatbot, question, audio_input])
tts_output
# Right: Chatbot screen
with gr.Column(scale=2, min_width=500):
with gr.Group(elem_classes="compact-box"):
chatbot
# Add JavaScript for audio handling
demo.load(
fn=None,
inputs=None,
outputs=None,
js="""
function() {
window.addEventListener('message', function(event) {
if (event.data.type === 'audio_data') {
const audioData = event.data.data;
const byteString = atob(audioData.split(',')[1]);
const mimeString = audioData.split(',')[0].split(':')[1].split(';')[0];
const ab = new ArrayBuffer(byteString.length);
const ia = new Uint8Array(ab);
for (let i = 0; i < byteString.length; i++) {
ia[i] = byteString.charCodeAt(i);
}
const blob = new Blob([ab], {type: mimeString});
const file = new File([blob], "recording.wav", {type: mimeString});
const audioInput = document.querySelector('input[type="file"]');
const dataTransfer = new DataTransfer();
dataTransfer.items.add(file);
audioInput.files = dataTransfer.files;
audioInput.dispatchEvent(new Event('change', { bubbles: true }));
}
});
}
"""
)
if __name__ == "__main__":
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |