Spaces:
Sleeping
Sleeping
File size: 9,677 Bytes
e47ecb8 1ea42dc e47ecb8 1ea42dc e47ecb8 1ea42dc e47ecb8 1ea42dc e47ecb8 1ea42dc e47ecb8 1ea42dc e47ecb8 1ea42dc e47ecb8 1ea42dc e47ecb8 1ea42dc e47ecb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import random
import PIL
import numpy as np
class MIDITokenizer:
def __init__(self):
self.vocab_size = 0
def allocate_ids(size):
ids = [self.vocab_size + i for i in range(size)]
self.vocab_size += size
return ids
self.pad_id = allocate_ids(1)[0]
self.bos_id = allocate_ids(1)[0]
self.eos_id = allocate_ids(1)[0]
self.events = {
"note": ["time1", "time2", "track", "duration", "channel", "pitch", "velocity"],
"patch_change": ["time1", "time2", "track", "channel", "patch"],
"control_change": ["time1", "time2", "track", "channel", "controller", "value"],
"set_tempo": ["time1", "time2", "track", "bpm"],
}
self.event_parameters = {
"time1": 128, "time2": 16, "duration": 2048, "track": 128, "channel": 16, "pitch": 128, "velocity": 128,
"patch": 128, "controller": 128, "value": 128, "bpm": 256
}
self.event_ids = {e: allocate_ids(1)[0] for e in self.events.keys()}
self.id_events = {i: e for e, i in self.event_ids.items()}
self.parameter_ids = {p: allocate_ids(s) for p, s in self.event_parameters.items()}
self.max_token_seq = max([len(ps) for ps in self.events.values()]) + 1
def tempo2bpm(self, tempo):
tempo = tempo / 10 ** 6 # us to s
bpm = 60 / tempo
return bpm
def bpm2tempo(self, bpm):
if bpm == 0:
bpm = 1
tempo = int((60 / bpm) * 10 ** 6)
return tempo
def tokenize(self, midi_score, add_bos_eos=True):
ticks_per_beat = midi_score[0]
event_list = {}
for track_idx, track in enumerate(midi_score[1:129]):
last_notes = {}
for event in track:
t = round(16 * event[1] / ticks_per_beat) # quantization
new_event = [event[0], t // 16, t % 16, track_idx] + event[2:]
if event[0] == "note":
new_event[4] = max(1, round(16 * new_event[4] / ticks_per_beat))
elif event[0] == "set_tempo":
new_event[4] = int(self.tempo2bpm(new_event[4]))
if event[0] == "note":
key = tuple(new_event[:4] + new_event[5:-1])
else:
key = tuple(new_event[:-1])
if event[0] == "note": # to eliminate note overlap due to quantization
cp = tuple(new_event[5:7])
if cp in last_notes:
last_note_key, last_note = last_notes[cp]
last_t = last_note[1] * 16 + last_note[2]
last_note[4] = max(0, min(last_note[4], t - last_t))
if last_note[4] == 0:
event_list.pop(last_note_key)
last_notes[cp] = (key, new_event)
event_list[key] = new_event
event_list = list(event_list.values())
event_list = sorted(event_list, key=lambda e: e[1:4])
midi_seq = []
last_t1 = 0
for event in event_list:
name = event[0]
if name in self.event_ids:
params = event[1:]
cur_t1 = params[0]
params[0] = params[0] - last_t1
if not all([0 <= params[i] < self.event_parameters[p] for i, p in enumerate(self.events[name])]):
continue
tokens = [self.event_ids[name]] + [self.parameter_ids[p][params[i]]
for i, p in enumerate(self.events[name])]
tokens += [self.pad_id] * (self.max_token_seq - len(tokens))
midi_seq.append(tokens)
last_t1 = cur_t1
if add_bos_eos:
bos = [self.bos_id] + [self.pad_id] * (self.max_token_seq - 1)
eos = [self.eos_id] + [self.pad_id] * (self.max_token_seq - 1)
midi_seq = [bos] + midi_seq + [eos]
return midi_seq
def event2tokens(self, event):
name = event[0]
params = event[1:]
tokens = [self.event_ids[name]] + [self.parameter_ids[p][params[i]]
for i, p in enumerate(self.events[name])]
tokens += [self.pad_id] * (self.max_token_seq - len(tokens))
return tokens
def detokenize(self, midi_seq):
ticks_per_beat = 480
tracks_dict = {}
t1 = 0
for tokens in midi_seq:
if tokens[0] in self.id_events:
name = self.id_events[tokens[0]]
if len(tokens) <= len(self.events[name]):
continue
params = tokens[1:]
params = [params[i] - self.parameter_ids[p][0] for i, p in enumerate(self.events[name])]
if not all([0 <= params[i] < self.event_parameters[p] for i, p in enumerate(self.events[name])]):
continue
event = [name] + params
if name == "set_tempo":
event[4] = self.bpm2tempo(event[4])
if event[0] == "note":
event[4] = int(event[4] * ticks_per_beat / 16)
t1 += event[1]
t = t1 * 16 + event[2]
t = int(t * ticks_per_beat / 16)
track_idx = event[3]
if track_idx not in tracks_dict:
tracks_dict[track_idx] = []
tracks_dict[track_idx].append([event[0], t] + event[4:])
tracks = list(tracks_dict.values())
for i in range(len(tracks)): # to eliminate note overlap
track = tracks[i]
track = sorted(track, key=lambda e: e[1])
last_note_t = {}
zero_len_notes = []
for e in reversed(track):
if e[0] == "note":
t, d, c, p = e[1:5]
key = (c, p)
if key in last_note_t:
d = min(d, max(last_note_t[key] - t, 0))
last_note_t[key] = t
e[2] = d
if d == 0:
zero_len_notes.append(e)
for e in zero_len_notes:
track.remove(e)
tracks[i] = track
return [ticks_per_beat, *tracks]
def midi2img(self, midi_score):
ticks_per_beat = midi_score[0]
notes = []
max_time = 1
track_num = len(midi_score[1:])
for track_idx, track in enumerate(midi_score[1:]):
for event in track:
t = round(16 * event[1] / ticks_per_beat)
if event[0] == "note":
d = max(1, round(16 * event[2] / ticks_per_beat))
c, p = event[3:5]
max_time = max(max_time, t + d + 1)
notes.append((track_idx, c, p, t, d))
img = np.zeros((128, max_time, 3), dtype=np.uint8)
colors = {(i, j): np.random.randint(50, 256, 3) for i in range(track_num) for j in range(16)}
for note in notes:
tr, c, p, t, d = note
img[p, t: t + d] = colors[(tr, c)]
img = PIL.Image.fromarray(np.flip(img, 0))
return img
def augment(self, midi_seq, max_pitch_shift=4, max_vel_shift=10, max_cc_val_shift=10, max_bpm_shift=10):
pitch_shift = random.randint(-max_pitch_shift, max_pitch_shift)
vel_shift = random.randint(-max_vel_shift, max_vel_shift)
cc_val_shift = random.randint(-max_cc_val_shift, max_cc_val_shift)
bpm_shift = random.randint(-max_bpm_shift, max_bpm_shift)
midi_seq_new = []
for tokens in midi_seq:
tokens_new = [*tokens]
if tokens[0] in self.id_events:
name = self.id_events[tokens[0]]
if name == "note":
c = tokens[5] - self.parameter_ids["channel"][0]
p = tokens[6] - self.parameter_ids["pitch"][0]
v = tokens[7] - self.parameter_ids["velocity"][0]
if c != 9: # no shift for drums
p += pitch_shift
if not 0 <= p < 128:
return midi_seq
v += vel_shift
v = max(1, min(127, v))
tokens_new[6] = self.parameter_ids["pitch"][p]
tokens_new[7] = self.parameter_ids["velocity"][v]
elif name == "control_change":
cc = tokens[5] - self.parameter_ids["controller"][0]
val = tokens[6] - self.parameter_ids["value"][0]
if cc in [1, 2, 7, 11]:
val += cc_val_shift
val = max(1, min(127, val))
tokens_new[6] = self.parameter_ids["value"][val]
elif name == "set_tempo":
bpm = tokens[4] - self.parameter_ids["bpm"][0]
bpm += bpm_shift
bpm = max(1, min(255, bpm))
tokens_new[4] = self.parameter_ids["bpm"][bpm]
midi_seq_new.append(tokens_new)
return midi_seq_new
def check_alignment(self, midi_seq, threshold=0.4):
total = 0
hist = [0] * 16
for tokens in midi_seq:
if tokens[0] in self.id_events and self.id_events[tokens[0]] == "note":
t2 = tokens[2] - self.parameter_ids["time2"][0]
total += 1
hist[t2] += 1
if total == 0:
return False
hist = sorted(hist, reverse=True)
p = sum(hist[:2]) / total
return p > threshold
|