File size: 5,368 Bytes
dabad06 efba111 dabad06 f0b8ea3 ce31562 dabad06 f0b8ea3 dabad06 2a085a7 dabad06 f0b8ea3 dabad06 f0b8ea3 3feaece efba111 3feaece dabad06 317535b dabad06 317535b dabad06 317535b dabad06 317535b dabad06 317535b dabad06 577c6b3 dabad06 f0b8ea3 dabad06 577c6b3 dabad06 317535b dabad06 f0b8ea3 dabad06 577c6b3 dabad06 ce31562 dabad06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import pickle
import os
import praw
import torch
from transformers import RobertaTokenizer, RobertaForSequenceClassification
import nltk
from nltk.stem.porter import PorterStemmer
from nltk.corpus import stopwords
import spacy
import string
import matplotlib.pyplot as plt
from wordcloud import WordCloud
def save_data(data, filename):
with open(filename, 'wb') as file:
pickle.dump(data, file)
def load_data(filename):
if os.path.exists(filename):
with open(filename, 'rb') as file:
return pickle.load(file)
else:
return None
# PRAW configs
REDDIT_CLIENT_ID = os.environ['client_id']
REDDIT_CLIENT_SECRET = os.environ['secret_key']
REDDIT_USERNAME = os.environ['username']
reddit = praw.Reddit(
client_id=REDDIT_CLIENT_ID,
client_secret=REDDIT_CLIENT_SECRET,
user_agent=f"script:sentiment-analysis:v0.0.1 (by {REDDIT_USERNAME})"
)
# NLP configs
stemmer = PorterStemmer()
nlp = spacy.load("en_core_web_sm")
nltk.download('punkt')
# Model configs
tokenizer = RobertaTokenizer.from_pretrained('aychang/roberta-base-imdb')
model = RobertaForSequenceClassification.from_pretrained(
'aychang/roberta-base-imdb', num_labels=2)
model.classifier = torch.nn.Linear(768, 2)
def get_sentiment(query):
print('inside get sentiment')
filename = f"data/sentiment_analysis/{query}_results.pkl"
saved_data = load_data(filename)
if saved_data:
print('inside saved_data')
positive, negative, _ = saved_data
wordcloud = f'static/images/wordcloud/{query}_cloud.png'
return positive, negative, wordcloud
else:
print(' inside else not saved data')
results = get_reddit_results(query)
if not results:
print('no results')
error = "No results found for query"
return error
positive, negative, wordcloud = analyze_comments(
results, query=query)
print(f'positive:{positive}')
save_data((positive, negative, wordcloud), filename)
return positive, negative, f'static/images/wordcloud/{query}_cloud.png'
def get_reddit_results(query):
print('inside get reddit result')
try:
sub = reddit.subreddit('noveltranslations+progressionfantasy')
results = sub.search(query, limit=1)
results_list = list(results)
if results_list:
print(f'result from reddit: {results_list[0]}')
return results_list
else:
print("No results found for query.")
return []
except Exception as e:
print(f"Error occurred: {e}")
return []
def transform_text(text):
print('inside transformtext0')
text = text.lower()
text = nltk.word_tokenize(text)
print('inside transformtext1')
text = [i for i in text if i.isalnum()]
print('inside transformtext2')
text = [i for i in text if i not in stopwords.words(
'english') and i not in string.punctuation]
print('inside transformtext3')
text = [stemmer.stem(i) for i in text]
print('inside transformtext4')
return ' '.join(text)
def tokenize(text):
print('inside tokenize')
doc = nlp(text)
return [token.text for token in doc]
def analyze_comments(results, query):
total_positive = 0
total_negative = 0
total_comments = 0
comments_for_cloud = []
for submission in results:
print('inside submission')
submission.comments.replace_more(limit=None)
all_comments = submission.comments.list()
for comment in all_comments:
print('inside comment')
comment_body = comment.body
print(comment_body)
text = transform_text(comment_body)
print(text)
comments_for_cloud.append(comment_body)
if text:
print('inside text')
tokens = tokenize(text)
tokenized_input = tokenizer(
tokens, return_tensors='pt', truncation=True, padding=True)
outputs = model(**tokenized_input)
probabilities = torch.softmax(outputs.logits, dim=-1)
mean_probabilities = probabilities.mean(dim=1)
positive_pct = mean_probabilities[0][1].item() * 100
negative_pct = mean_probabilities[0][0].item() * 100
total_positive += positive_pct
total_negative += negative_pct
total_comments += 1
if total_comments > 0:
avg_positive = total_positive / total_comments
avg_negative = total_negative / total_comments
else:
avg_positive = 0
avg_negative = 0
if total_comments > 0:
all_comments_string = ' '.join(comments_for_cloud)
wordcloud = WordCloud(width=400, height=400,
background_color='white',
max_words=30,
stopwords=stopwords.words('english'),
min_font_size=10).generate(all_comments_string)
# Save the WordCloud image as a static file
wordcloud.to_file(
f'static/images/wordcloud/{query}_cloud.png')
else:
wordcloud = None
print(f'positive:{avg_positive}')
return round(avg_positive), round(avg_negative), wordcloud
|