File size: 4,534 Bytes
eec9309
 
 
 
 
 
 
 
 
960e8ea
 
eec9309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db68521
eec9309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db68521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eec9309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
960e8ea
eec9309
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
"""
File: app.py
Author: Elena Ryumina and Dmitry Ryumin
Description: Description: Main application file for Facial_Expression_Recognition.
             The file defines the Gradio interface, sets up the main blocks,
             and includes event handlers for various components.
License: MIT License
"""

import gradio as gr

# Importing necessary components for the Gradio app
from app.description import DESCRIPTION_STATIC, DESCRIPTION_DYNAMIC
from app.authors import AUTHORS
from app.app_utils import preprocess_image_and_predict, preprocess_video_and_predict


def clear_static_info():
    return (
        gr.Image(value=None, type="pil"),
        gr.Image(value=None, scale=1, elem_classes="dl5"),
        gr.Image(value=None, scale=1, elem_classes="dl2"),
        gr.Label(value=None, num_top_classes=3, scale=1, elem_classes="dl3"),
    )

def clear_dynamic_info():
    return (
        gr.Video(value=None),
        gr.Video(value=None),
        gr.Video(value=None),
        gr.Video(value=None),
        gr.Plot(value=None),
    )

with gr.Blocks(css="app.css") as demo:
    with gr.Tab("Static Faces"):
        gr.Markdown(value=DESCRIPTION_STATIC)
        with gr.Row():
            with gr.Column(scale=2, elem_classes="dl1"):
                input_image = gr.Image(label="Original image", type="pil")
                with gr.Row():
                    clear_btn = gr.Button(
                        value="Clear", interactive=True, scale=1, elem_classes="clear"
                    )
                    submit = gr.Button(
                        value="Submit", interactive=True, scale=1, elem_classes="submit"
                    )
            with gr.Column(scale=1, elem_classes="dl4"):
                with gr.Row():
                    output_image = gr.Image(label="Face", scale=1, elem_classes="dl5")
                    output_heatmap = gr.Image(label="Heatmap", scale=1, elem_classes="dl2")
                output_label = gr.Label(num_top_classes=3, scale=1, elem_classes="dl3")
        gr.Examples(
            [
                "images/fig7.jpg",
                "images/fig1.jpg",
                "images/fig2.jpg",
                "images/fig3.jpg",
                "images/fig4.jpg",
                "images/fig5.jpg",
                "images/fig6.jpg",
            ],
            [input_image],
        )
    
    with gr.Tab("Dynamic Faces"):
        gr.Markdown(value=DESCRIPTION_DYNAMIC)
        with gr.Row():
            with gr.Column(scale=2):
                input_video = gr.Video(elem_classes="video1")
                with gr.Row():
                    clear_btn_dynamic = gr.Button(
                        value="Clear", interactive=True, scale=1
                    )
                    submit_dynamic = gr.Button(
                        value="Submit", interactive=True, scale=1, elem_classes="submit"
                    )
            with gr.Column(scale=2, elem_classes="dl4"):
                with gr.Row():
                    output_video = gr.Video(label="Original video", scale=1, elem_classes="video2")
                    output_face = gr.Video(label="Pre-processed video", scale=1, elem_classes="video3")
                    output_heatmaps = gr.Video(label="Heatmaps", scale=1, elem_classes="video4")
                output_statistics = gr.Plot(label="Statistics of emotions", elem_classes="stat")
        gr.Examples(
            ["videos/video1.mp4",
            "videos/video2.mp4",
            ],
            [input_video],
        )

    
    with gr.Tab("References"):
        gr.Markdown(value=AUTHORS)

    submit.click(
        fn=preprocess_image_and_predict,
        inputs=[input_image],
        outputs=[output_image, output_heatmap, output_label],
        queue=True,
    )
    clear_btn.click(
        fn=clear_static_info,
        inputs=[],
        outputs=[input_image, output_image, output_heatmap, output_label],
        queue=True,
    )

    submit_dynamic.click(
        fn=preprocess_video_and_predict,
        inputs=input_video,
        outputs=[
            output_video,
            output_face,
            output_heatmaps, 
            output_statistics
        ],
        queue=True,
    )
    clear_btn_dynamic.click(
        fn=clear_dynamic_info,
        inputs=[],
        outputs=[
            input_video,
            output_video,
            output_face,
            output_heatmaps, 
            output_statistics
        ],
        queue=True,
    )

if __name__ == "__main__":
    demo.queue(api_open=False).launch(share=False)