Spaces:
Runtime error
Runtime error
File size: 11,446 Bytes
51a8c11 9654b35 51a8c11 9654b35 fc849f1 51a8c11 fc849f1 51a8c11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
##### `πβ Open_Assistant.py`
##### https://huggingface.co/spaces/olivierdehaene/chat-llm-streaming/blob/main/README.md
##### https://huggingface.co/OpenAssistant/oasst-sft-1-pythia-12b
##### Please reach out to ben@benbox.org for any questions
#### Loading needed Python libraries
import streamlit as st
import os
from text_generation import Client, InferenceAPIClient
from text_generation import InferenceAPIClient
st.header('πβ Open Assistant LLM')
st.write('This is the first iteration English supervised-fine-tuning (SFT) model of the Open-Assistant project. It is based on a Pythia 12B that was fine-tuned on ~22k human demonstrations of assistant conversations collected through the https://open-assistant.io/ human feedback web app before March 7, 2023.')
st.write('Question: :green[Why is the sky blue?]')
client = InferenceAPIClient("OpenAssistant/oasst-sft-1-pythia-12b")
text = client.generate("<|prompter|>Why is the sky blue?<|endoftext|><|assistant|>").generated_text
st.write('Answer: :green[' + str(text) + ']')
# Token Streaming
#text = ""
#for response in client.generate_stream("<|prompter|>Why is the sky blue?<|endoftext|><|assistant|>"):
# if not response.token.special:
# print(response.token.text)
# text += response.token.text
#st.write(text)
#
# openchat_preprompt = (
# "\n<human>: Hi!\n<bot>: My name is Bot, model version is 0.15, part of an open-source kit for "
# "fine-tuning new bots! I was created by Together, LAION, and Ontocord.ai and the open-source "
# "community. I am not human, not evil and not alive, and thus have no thoughts and feelings, "
# "but I am programmed to be helpful, polite, honest, and friendly.\n"
# )
#
#
# def get_client(model: str):
# if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
# return Client(os.getenv("OPENCHAT_API_URL"))
# return InferenceAPIClient(model, token = os.getenv("HF_TOKEN", None))
#
#
# def get_usernames(model: str):
# """
# Returns:
# (str, str, str, str): pre-prompt, username, bot name, separator
# """
# if model == "OpenAssistant/oasst-sft-1-pythia-12b":
# return "", "<|prompter|>", "<|assistant|>", "<|endoftext|>"
# if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
# return openchat_preprompt, "<human>: ", "<bot>: ", "\n"
# return "", "User: ", "Assistant: ", "\n"
#
#
# def predict(
# model: str,
# inputs: str,
# typical_p: float,
# top_p: float,
# temperature: float,
# top_k: int,
# repetition_penalty: float,
# watermark: bool,
# chatbot,
# history,
# ):
# client = get_client(model)
# preprompt, user_name, assistant_name, sep = get_usernames(model)
#
# history.append(inputs)
#
# past = []
# for data in chatbot:
# user_data, model_data = data
#
# if not user_data.startswith(user_name):
# user_data = user_name + user_data
# if not model_data.startswith(sep + assistant_name):
# model_data = sep + assistant_name + model_data
#
# past.append(user_data + model_data.rstrip() + sep)
#
# if not inputs.startswith(user_name):
# inputs = user_name + inputs
#
# total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip()
#
# partial_words = ""
#
# if model == "OpenAssistant/oasst-sft-1-pythia-12b":
# iterator = client.generate_stream(
# total_inputs,
# typical_p = typical_p,
# truncate = 1000,
# watermark = watermark,
# max_new_tokens = 500,
# )
# else:
# iterator = client.generate_stream(
# total_inputs,
# top_p = top_p if top_p < 1.0 else None,
# top_k = top_k,
# truncate = 1000,
# repetition_penalty = repetition_penalty,
# watermark = watermark,
# temperature = temperature,
# max_new_tokens = 500,
# stop_sequences = [user_name.rstrip(), assistant_name.rstrip()],
# )
#
# for i, response in enumerate(iterator):
# if response.token.special:
# continue
#
# partial_words = partial_words + response.token.text
# if partial_words.endswith(user_name.rstrip()):
# partial_words = partial_words.rstrip(user_name.rstrip())
# if partial_words.endswith(assistant_name.rstrip()):
# partial_words = partial_words.rstrip(assistant_name.rstrip())
#
# if i == 0:
# history.append(" " + partial_words)
# elif response.token.text not in user_name:
# history[-1] = partial_words
#
# chat = [
# (history[i].strip(), history[i + 1].strip())
# for i in range(0, len(history) - 1, 2)
# ]
# yield chat, history
#
#
# def reset_textbox():
# return gr.update(value = "")
#
#
# def radio_on_change(
# value: str,
# disclaimer,
# typical_p,
# top_p,
# top_k,
# temperature,
# repetition_penalty,
# watermark,
# ):
# if value == "OpenAssistant/oasst-sft-1-pythia-12b":
# typical_p = typical_p.update(value = 0.2, visible = True)
# top_p = top_p.update(visible = False)
# top_k = top_k.update(visible = False)
# temperature = temperature.update(visible = False)
# disclaimer = disclaimer.update(visible = False)
# repetition_penalty = repetition_penalty.update(visible = False)
# watermark = watermark.update(False)
# elif value == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
# typical_p = typical_p.update(visible = False)
# top_p = top_p.update(value = 0.25, visible = True)
# top_k = top_k.update(value = 50, visible = True)
# temperature = temperature.update(value = 0.6, visible = True)
# repetition_penalty = repetition_penalty.update(value = 1.01, visible = True)
# watermark = watermark.update(False)
# disclaimer = disclaimer.update(visible = True)
# else:
# typical_p = typical_p.update(visible = False)
# top_p = top_p.update(value = 0.95, visible = True)
# top_k = top_k.update(value = 4, visible = True)
# temperature = temperature.update(value = 0.5, visible = True)
# repetition_penalty = repetition_penalty.update(value = 1.03, visible = True)
# watermark = watermark.update(True)
# disclaimer = disclaimer.update(visible = False)
# return (
# disclaimer,
# typical_p,
# top_p,
# top_k,
# temperature,
# repetition_penalty,
# watermark,
# )
#
#
# title = """<h1 align="center">π₯Large Language Model API πStreamingπ</h1>"""
# description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
# ```
# User: <utterance>
# Assistant: <utterance>
# User: <utterance>
# Assistant: <utterance>
# ...
# ```
# In this app, you can explore the outputs of multiple LLMs when prompted in this way.
# """
#
# openchat_disclaimer = """
# <div align="center">Checkout the official <a href=https://huggingface.co/spaces/togethercomputer/OpenChatKit>OpenChatKit feedback app</a> for the full experience.</div>
# """
#
# with gr.Blocks(
# css = """#col_container {margin-left: auto; margin-right: auto;}
# #chatbot {height: 520px; overflow: auto;}"""
# ) as demo:
# gr.HTML(title)
# with gr.Column(elem_id = "col_container"):
# model = gr.Radio(
# value = "OpenAssistant/oasst-sft-1-pythia-12b",
# choices = [
# "OpenAssistant/oasst-sft-1-pythia-12b",
# # "togethercomputer/GPT-NeoXT-Chat-Base-20B",
# "google/flan-t5-xxl",
# "google/flan-ul2",
# "bigscience/bloom",
# "bigscience/bloomz",
# "EleutherAI/gpt-neox-20b",
# ],
# label = "Model",
# interactive = True,
# )
#
# chatbot = gr.Chatbot(elem_id = "chatbot")
# inputs = gr.Textbox(
# placeholder = "Hi there!", label = "Type an input and press Enter"
# )
# disclaimer = gr.Markdown(openchat_disclaimer, visible = False)
# state = gr.State([])
# b1 = gr.Button()
#
# with gr.Accordion("Parameters", open = False):
# typical_p = gr.Slider(
# minimum = -0,
# maximum = 1.0,
# value = 0.2,
# step = 0.05,
# interactive = True,
# label = "Typical P mass",
# )
# top_p = gr.Slider(
# minimum = -0,
# maximum = 1.0,
# value = 0.25,
# step = 0.05,
# interactive = True,
# label = "Top-p (nucleus sampling)",
# visible = False,
# )
# temperature = gr.Slider(
# minimum = -0,
# maximum = 5.0,
# value = 0.6,
# step = 0.1,
# interactive = True,
# label = "Temperature",
# visible = False,
# )
# top_k = gr.Slider(
# minimum = 1,
# maximum = 50,
# value = 50,
# step = 1,
# interactive = True,
# label = "Top-k",
# visible = False,
# )
# repetition_penalty = gr.Slider(
# minimum = 0.1,
# maximum = 3.0,
# value = 1.03,
# step = 0.01,
# interactive = True,
# label = "Repetition Penalty",
# visible = False,
# )
# watermark = gr.Checkbox(value = False, label = "Text watermarking")
#
# model.change(
# lambda value: radio_on_change(
# value,
# disclaimer,
# typical_p,
# top_p,
# top_k,
# temperature,
# repetition_penalty,
# watermark,
# ),
# inputs = model,
# outputs = [
# disclaimer,
# typical_p,
# top_p,
# top_k,
# temperature,
# repetition_penalty,
# watermark,
# ],
# )
#
# inputs.submit(
# predict,
# [
# model,
# inputs,
# typical_p,
# top_p,
# temperature,
# top_k,
# repetition_penalty,
# watermark,
# chatbot,
# state,
# ],
# [chatbot, state],
# )
# b1.click(
# predict,
# [
# model,
# inputs,
# typical_p,
# top_p,
# temperature,
# top_k,
# repetition_penalty,
# watermark,
# chatbot,
# state,
# ],
# [chatbot, state],
# )
# b1.click(reset_textbox, [], [inputs])
# inputs.submit(reset_textbox, [], [inputs])
#
# gr.Markdown(description)
# demo.queue(concurrency_count = 16).launch(debug = True)
|