File size: 15,725 Bytes
8c07c55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
import en_core_web_sm
import json
import numpy as np
import random
import re
import torch
from transformers import (
AutoTokenizer,
AutoModelForSeq2SeqLM,
AutoModelForSequenceClassification,
)
from typing import Any, List, Mapping, Tuple
class QuestionGenerator:
"""A transformer-based NLP system for generating reading comprehension-style questions from
texts. It can generate full sentence questions, multiple choice questions, or a mix of the
two styles.
To filter out low quality questions, questions are assigned a score and ranked once they have
been generated. Only the top k questions will be returned. This behaviour can be turned off
by setting use_evaluator=False.
"""
def __init__(self) -> None:
QG_PRETRAINED = "iarfmoose/t5-base-question-generator"
self.ANSWER_TOKEN = "<answer>"
self.CONTEXT_TOKEN = "<context>"
self.SEQ_LENGTH = 512
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu")
self.qg_tokenizer = AutoTokenizer.from_pretrained(
QG_PRETRAINED, use_fast=False)
self.qg_model = AutoModelForSeq2SeqLM.from_pretrained(QG_PRETRAINED)
self.qg_model.to(self.device)
self.qg_model.eval()
self.qa_evaluator = QAEvaluator()
def generate(
self,
article: str,
use_evaluator: bool = True,
num_questions: bool = None,
answer_style: str = "all"
) -> List:
"""Takes an article and generates a set of question and answer pairs. If use_evaluator
is True then QA pairs will be ranked and filtered based on their quality. answer_style
should selected from ["all", "sentences", "multiple_choice"].
"""
print("Generating questions...\n")
qg_inputs, qg_answers = self.generate_qg_inputs(article, answer_style)
generated_questions = self.generate_questions_from_inputs(qg_inputs)
message = "{} questions doesn't match {} answers".format(
len(generated_questions), len(qg_answers)
)
assert len(generated_questions) == len(qg_answers), message
if use_evaluator:
print("Evaluating QA pairs...\n")
encoded_qa_pairs = self.qa_evaluator.encode_qa_pairs(
generated_questions, qg_answers
)
scores = self.qa_evaluator.get_scores(encoded_qa_pairs)
if num_questions:
qa_list = self._get_ranked_qa_pairs(
generated_questions, qg_answers, scores, num_questions
)
else:
qa_list = self._get_ranked_qa_pairs(
generated_questions, qg_answers, scores
)
else:
print("Skipping evaluation step.\n")
qa_list = self._get_all_qa_pairs(generated_questions, qg_answers)
return qa_list
def generate_qg_inputs(self, text: str, answer_style: str) -> Tuple[List[str], List[str]]:
"""Given a text, returns a list of model inputs and a list of corresponding answers.
Model inputs take the form "answer_token <answer text> context_token <context text>" where
the answer is a string extracted from the text, and the context is the wider text surrounding
the context.
"""
VALID_ANSWER_STYLES = ["all", "sentences", "multiple_choice"]
if answer_style not in VALID_ANSWER_STYLES:
raise ValueError(
"Invalid answer style {}. Please choose from {}".format(
answer_style, VALID_ANSWER_STYLES
)
)
inputs = []
answers = []
if answer_style == "sentences" or answer_style == "all":
segments = self._split_into_segments(text)
for segment in segments:
sentences = self._split_text(segment)
prepped_inputs, prepped_answers = self._prepare_qg_inputs(
sentences, segment
)
inputs.extend(prepped_inputs)
answers.extend(prepped_answers)
if answer_style == "multiple_choice" or answer_style == "all":
sentences = self._split_text(text)
prepped_inputs, prepped_answers = self._prepare_qg_inputs_MC(
sentences
)
inputs.extend(prepped_inputs)
answers.extend(prepped_answers)
return inputs, answers
def generate_questions_from_inputs(self, qg_inputs: List) -> List[str]:
"""Given a list of concatenated answers and contexts, with the form:
"answer_token <answer text> context_token <context text>", generates a list of
questions.
"""
generated_questions = []
for qg_input in qg_inputs:
question = self._generate_question(qg_input)
generated_questions.append(question)
return generated_questions
def _split_text(self, text: str) -> List[str]:
"""Splits the text into sentences, and attempts to split or truncate long sentences."""
MAX_SENTENCE_LEN = 128
sentences = re.findall(".*?[.!\?]", text)
cut_sentences = []
for sentence in sentences:
if len(sentence) > MAX_SENTENCE_LEN:
cut_sentences.extend(re.split("[,;:)]", sentence))
# remove useless post-quote sentence fragments
cut_sentences = [s for s in sentences if len(s.split(" ")) > 5]
sentences = sentences + cut_sentences
return list(set([s.strip(" ") for s in sentences]))
def _split_into_segments(self, text: str) -> List[str]:
"""Splits a long text into segments short enough to be input into the transformer network.
Segments are used as context for question generation.
"""
MAX_TOKENS = 490
paragraphs = text.split("\n")
tokenized_paragraphs = [
self.qg_tokenizer(p)["input_ids"] for p in paragraphs if len(p) > 0
]
segments = []
while len(tokenized_paragraphs) > 0:
segment = []
while len(segment) < MAX_TOKENS and len(tokenized_paragraphs) > 0:
paragraph = tokenized_paragraphs.pop(0)
segment.extend(paragraph)
segments.append(segment)
return [self.qg_tokenizer.decode(s, skip_special_tokens=True) for s in segments]
def _prepare_qg_inputs(
self,
sentences: List[str],
text: str
) -> Tuple[List[str], List[str]]:
"""Uses sentences as answers and the text as context. Returns a tuple of (model inputs, answers).
Model inputs are "answer_token <answer text> context_token <context text>"
"""
inputs = []
answers = []
for sentence in sentences:
qg_input = f"{self.ANSWER_TOKEN} {sentence} {self.CONTEXT_TOKEN} {text}"
inputs.append(qg_input)
answers.append(sentence)
return inputs, answers
def _prepare_qg_inputs_MC(self, sentences: List[str]) -> Tuple[List[str], List[str]]:
"""Performs NER on the text, and uses extracted entities are candidate answers for multiple-choice
questions. Sentences are used as context, and entities as answers. Returns a tuple of (model inputs, answers).
Model inputs are "answer_token <answer text> context_token <context text>"
"""
spacy_nlp = en_core_web_sm.load()
docs = list(spacy_nlp.pipe(sentences, disable=["parser"]))
inputs_from_text = []
answers_from_text = []
for doc, sentence in zip(docs, sentences):
entities = doc.ents
if entities:
for entity in entities:
qg_input = f"{self.ANSWER_TOKEN} {entity} {self.CONTEXT_TOKEN} {sentence}"
answers = self._get_MC_answers(entity, docs)
inputs_from_text.append(qg_input)
answers_from_text.append(answers)
return inputs_from_text, answers_from_text
def _get_MC_answers(self, correct_answer: Any, docs: Any) -> List[Mapping[str, Any]]:
"""Finds a set of alternative answers for a multiple-choice question. Will attempt to find
alternatives of the same entity type as correct_answer if possible.
"""
entities = []
for doc in docs:
entities.extend([{"text": e.text, "label_": e.label_}
for e in doc.ents])
# remove duplicate elements
entities_json = [json.dumps(kv) for kv in entities]
pool = set(entities_json)
num_choices = (
min(4, len(pool)) - 1
) # -1 because we already have the correct answer
# add the correct answer
final_choices = []
correct_label = correct_answer.label_
final_choices.append({"answer": correct_answer.text, "correct": True})
pool.remove(
json.dumps({"text": correct_answer.text,
"label_": correct_answer.label_})
)
# find answers with the same NER label
matches = [e for e in pool if correct_label in e]
# if we don't have enough then add some other random answers
if len(matches) < num_choices:
choices = matches
pool = pool.difference(set(choices))
choices.extend(random.sample(pool, num_choices - len(choices)))
else:
choices = random.sample(matches, num_choices)
choices = [json.loads(s) for s in choices]
for choice in choices:
final_choices.append({"answer": choice["text"], "correct": False})
random.shuffle(final_choices)
return final_choices
@torch.no_grad()
def _generate_question(self, qg_input: str) -> str:
"""Takes qg_input which is the concatenated answer and context, and uses it to generate
a question sentence. The generated question is decoded and then returned.
"""
encoded_input = self._encode_qg_input(qg_input)
output = self.qg_model.generate(input_ids=encoded_input["input_ids"])
question = self.qg_tokenizer.decode(
output[0],
skip_special_tokens=True
)
return question
def _encode_qg_input(self, qg_input: str) -> torch.tensor:
"""Tokenizes a string and returns a tensor of input ids corresponding to indices of tokens in
the vocab.
"""
return self.qg_tokenizer(
qg_input,
padding='max_length',
max_length=self.SEQ_LENGTH,
truncation=True,
return_tensors="pt",
).to(self.device)
def _get_ranked_qa_pairs(
self, generated_questions: List[str], qg_answers: List[str], scores, num_questions: int = 10
) -> List[Mapping[str, str]]:
"""Ranks generated questions according to scores, and returns the top num_questions examples.
"""
if num_questions > len(scores):
num_questions = len(scores)
print((
f"\nWas only able to generate {num_questions} questions.",
"For more questions, please input a longer text.")
)
qa_list = []
for i in range(num_questions):
index = scores[i]
qa = {
"question": generated_questions[index].split("?")[0] + "?",
"answer": qg_answers[index]
}
qa_list.append(qa)
return qa_list
def _get_all_qa_pairs(self, generated_questions: List[str], qg_answers: List[str]):
"""Formats question and answer pairs without ranking or filtering."""
qa_list = []
for question, answer in zip(generated_questions, qg_answers):
qa = {
"question": question.split("?")[0] + "?",
"answer": answer
}
qa_list.append(qa)
return qa_list
class QAEvaluator:
"""Wrapper for a transformer model which evaluates the quality of question-answer pairs.
Given a QA pair, the model will generate a score. Scores can be used to rank and filter
QA pairs.
"""
def __init__(self) -> None:
QAE_PRETRAINED = "iarfmoose/bert-base-cased-qa-evaluator"
self.SEQ_LENGTH = 512
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu")
self.qae_tokenizer = AutoTokenizer.from_pretrained(QAE_PRETRAINED)
self.qae_model = AutoModelForSequenceClassification.from_pretrained(
QAE_PRETRAINED
)
self.qae_model.to(self.device)
self.qae_model.eval()
def encode_qa_pairs(self, questions: List[str], answers: List[str]) -> List[torch.tensor]:
"""Takes a list of questions and a list of answers and encodes them as a list of tensors."""
encoded_pairs = []
for question, answer in zip(questions, answers):
encoded_qa = self._encode_qa(question, answer)
encoded_pairs.append(encoded_qa.to(self.device))
return encoded_pairs
def get_scores(self, encoded_qa_pairs: List[torch.tensor]) -> List[float]:
"""Generates scores for a list of encoded QA pairs."""
scores = {}
for i in range(len(encoded_qa_pairs)):
scores[i] = self._evaluate_qa(encoded_qa_pairs[i])
return [
k for k, v in sorted(scores.items(), key=lambda item: item[1], reverse=True)
]
def _encode_qa(self, question: str, answer: str) -> torch.tensor:
"""Concatenates a question and answer, and then tokenizes them. Returns a tensor of
input ids corresponding to indices in the vocab.
"""
if type(answer) is list:
for a in answer:
if a["correct"]:
correct_answer = a["answer"]
else:
correct_answer = answer
return self.qae_tokenizer(
text=question,
text_pair=correct_answer,
padding="max_length",
max_length=self.SEQ_LENGTH,
truncation=True,
return_tensors="pt",
)
@torch.no_grad()
def _evaluate_qa(self, encoded_qa_pair: torch.tensor) -> float:
"""Takes an encoded QA pair and returns a score."""
output = self.qae_model(**encoded_qa_pair)
return output[0][0][1]
def print_qa(qa_list: List[Mapping[str, str]], show_answers: bool = True) -> None:
"""Formats and prints a list of generated questions and answers."""
for i in range(len(qa_list)):
# wider space for 2 digit q nums
space = " " * int(np.where(i < 9, 3, 4))
print(f"{i + 1}) Q: {qa_list[i]['question']}")
answer = qa_list[i]["answer"]
# print a list of multiple choice answers
if type(answer) is list:
if show_answers:
print(
f"{space}A: 1. {answer[0]['answer']} "
f"{np.where(answer[0]['correct'], '(correct)', '')}"
)
for j in range(1, len(answer)):
print(
f"{space + ' '}{j + 1}. {answer[j]['answer']} "
f"{np.where(answer[j]['correct']==True,'(correct)', '')}"
)
else:
print(f"{space}A: 1. {answer[0]['answer']}")
for j in range(1, len(answer)):
print(f"{space + ' '}{j + 1}. {answer[j]['answer']}")
print("")
# print full sentence answers
else:
if show_answers:
print(f"{space}A: {answer}\n")
|