File size: 1,298 Bytes
861ceca 1c412c7 861ceca eaaeefc 861ceca eaaeefc 861ceca 85b0be2 861ceca f243c21 861ceca 1c412c7 861ceca 2202a20 861ceca eaaeefc d66b101 eaaeefc f243c21 eaaeefc 861ceca 8dcd40a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
"""
CLI to run training on a model
"""
import logging
from pathlib import Path
from typing import Tuple
import fire
import transformers
from transformers import PreTrainedModel, PreTrainedTokenizer
from axolotl.cli import (
check_accelerate_default_config,
check_user_token,
load_cfg,
load_datasets,
load_rl_datasets,
print_axolotl_text_art,
)
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
LOG = logging.getLogger("axolotl.cli.train")
def do_cli(config: Path = Path("examples/"), **kwargs):
# pylint: disable=duplicate-code
parsed_cfg = load_cfg(config, **kwargs)
parser = transformers.HfArgumentParser((TrainerCliArgs))
parsed_cli_args, _ = parser.parse_args_into_dataclasses(
return_remaining_strings=True
)
return do_train(parsed_cfg, parsed_cli_args)
def do_train(cfg, cli_args) -> Tuple[PreTrainedModel, PreTrainedTokenizer]:
print_axolotl_text_art()
check_accelerate_default_config()
check_user_token()
if cfg.rl:
dataset_meta = load_rl_datasets(cfg=cfg, cli_args=cli_args)
else:
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
return train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
if __name__ == "__main__":
fire.Fire(do_cli)
|