File size: 16,276 Bytes
cfcc549 e6fdeb0 7bbaac9 e65aeed a363604 e6fdeb0 a363604 3392270 e6fdeb0 7925ddc 3a38271 3392270 7925ddc e7d3e2d 553a86b e6fdeb0 7bbaac9 e6fdeb0 cfcc549 a363604 e6fdeb0 0136f51 e6fdeb0 cfcc549 e6fdeb0 cfcc549 e6fdeb0 e7d3e2d e6fdeb0 a363604 e7d3e2d a363604 f30afe4 5ada140 7bbaac9 5ada140 7bbaac9 5ada140 7bbaac9 5ada140 7bbaac9 5ada140 7bbaac9 5ada140 7bbaac9 5ada140 7bbaac9 f30afe4 1ab3bf3 7925ddc baed440 7925ddc baed440 7925ddc e6fdeb0 3a38271 2bb0b78 3a38271 3392270 e6fdeb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
"""Module for testing prompt tokenizers."""
import json
import logging
import unittest
from copy import deepcopy
from pathlib import Path
from typing import Optional
import pytest
from transformers import AutoTokenizer, LlamaTokenizer
from axolotl.prompt_strategies.alpaca_chat import NoSystemPrompter
from axolotl.prompt_strategies.alpaca_w_system import (
InstructionWSystemPromptTokenizingStrategy,
SystemDataPrompter,
)
from axolotl.prompt_strategies.llama2_chat import (
Llama2ChatPrompter,
LLama2ChatTokenizingStrategy,
)
from axolotl.prompt_tokenizers import (
AlpacaPromptTokenizingStrategy,
ShareGPTPromptTokenizingStrategy,
)
from axolotl.prompters import AlpacaPrompter, PromptStyle, ShareGPTPrompterV2
LOG = logging.getLogger("axolotl")
test_data = {
"multi_turn_sys": {
"conversations": [
{"from": "system", "value": "lorem"},
{"from": "human", "value": "abc"},
{"from": "gpt", "value": "ipsum"},
{"from": "human", "value": "123"},
{"from": "gpt", "value": "sit"},
]
},
"single_turn_sys": {
"conversations": [
{"from": "system", "value": "lorem"},
{"from": "human", "value": "abc"},
{"from": "gpt", "value": "ipsum"},
]
},
"single_turn_no_sys": {
"conversations": [
{"from": "human", "value": "abc"},
{"from": "gpt", "value": "ipsum"},
]
},
"multi_turn_no_sys": {
"conversations": [
{"from": "human", "value": "abc"},
{"from": "gpt", "value": "ipsum"},
{"from": "human", "value": "123"},
{"from": "gpt", "value": "sit"},
]
},
}
def prompt_strat(conversation, tokenizer):
"Helper function to create a prompt strategy for testing."
prompter = ShareGPTPrompterV2(conversation=conversation)
return ShareGPTPromptTokenizingStrategy(
prompter,
tokenizer,
False,
2048,
)
class TestPromptTokenizationStrategies(unittest.TestCase):
"""
Test class for prompt tokenization strategies.
"""
_caplog: Optional[pytest.LogCaptureFixture] = None
@pytest.fixture(autouse=True)
def inject_fixtures(self, caplog):
self._caplog = caplog
def setUp(self) -> None:
# pylint: disable=duplicate-code
self.tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-7b")
self.tokenizer.add_special_tokens(
{
"bos_token": "<s>",
"eos_token": "</s>",
"unk_token": "<unk>",
}
)
def test_sharegpt_integration(self):
with open(
Path(__file__).parent / "fixtures/conversation.json", encoding="utf-8"
) as fin:
data = fin.read()
conversation = json.loads(data)
with open(
Path(__file__).parent / "fixtures/conversation.tokenized.json",
encoding="utf-8",
) as fin:
data = fin.read()
tokenized_conversation = json.loads(data)
prompter = ShareGPTPrompterV2()
strat = ShareGPTPromptTokenizingStrategy(
prompter,
self.tokenizer,
False,
2048,
)
example = strat.tokenize_prompt(conversation)
for fields in ["input_ids", "attention_mask", "labels"]:
self.assertEqual(len(example[fields]), len(tokenized_conversation[fields]))
self.assertEqual(example[fields], tokenized_conversation[fields])
def test_sharegpt_warnings_integration(self):
with open(
Path(__file__).parent / "fixtures/conversation.missingturns.json",
encoding="utf-8",
) as fin:
data = fin.read()
conversation = json.loads(data)
prompter = ShareGPTPrompterV2()
strat = ShareGPTPromptTokenizingStrategy(
prompter,
self.tokenizer,
False,
2048,
)
with self._caplog.at_level(logging.WARNING):
strat.tokenize_prompt(conversation)
assert "assistant turn has empty text" in self._caplog.records[1].message
def test_sharegpt_warnings_turns(self):
conversation = {
"conversations": [
{"from": "system", "value": "lorem"},
{"from": "gpt", "value": "ipsum"},
{"from": "human", "value": "dolor"},
{"from": "human", "value": "dolor"},
{"from": "gpt", "value": "sit"},
]
}
prompter = ShareGPTPrompterV2()
strat = ShareGPTPromptTokenizingStrategy(
prompter,
self.tokenizer,
False,
2048,
)
with self._caplog.at_level(logging.WARNING):
strat.tokenize_prompt(conversation)
assert (
"Role did not alternate between turns (gpt and human)"
in self._caplog.records[0].message
)
def test_sharegpt_llama(self):
"Make sure the sharegpt/llama is tokenized and formatted correctly."
strat = prompt_strat("llama-2", self.tokenizer)
def tokenize(conv):
return strat.tokenize_prompt(deepcopy(conv))["input_ids"]
def decode(ids):
return strat.tokenizer.decode(ids)
# fmt: off
# System message, multi-turn conversations
mt_ids = tokenize(test_data['multi_turn_sys'])
assert decode(mt_ids) == '<s> [INST] <<SYS>>\nlorem\n<</SYS>>\n\nabc [/INST] ipsum</s><s> [INST] 123 [/INST] sit</s>'
assert mt_ids == [1, 518, 25580, 29962, 3532, 14816, 29903, 6778, 13, 29880, 3668, 13, 29966, 829, 14816, 29903, 6778, 13, 13, 10736, 518, 29914, 25580, 29962, 23421, 2, 1, 518, 25580, 29962, 29871, 29896, 29906, 29941, 518, 29914, 25580, 29962, 7845, 2]
# System message, single-turn conversations
st_ids = tokenize(test_data['single_turn_sys'])
assert decode(st_ids) == '<s> [INST] <<SYS>>\nlorem\n<</SYS>>\n\nabc [/INST] ipsum</s>'
assert st_ids == [1, 518, 25580, 29962, 3532, 14816, 29903, 6778, 13, 29880, 3668, 13, 29966, 829, 14816, 29903, 6778, 13, 13, 10736, 518, 29914, 25580, 29962, 23421, 2]
# No system message, single-turn
ns_ids = tokenize(test_data['single_turn_no_sys'])
assert decode(ns_ids) == '<s> [INST] abc [/INST] ipsum</s>'
assert ns_ids == [1, 518, 25580, 29962, 25638, 518, 29914, 25580, 29962, 23421, 2]
# No system message, multi-turn
ns_mt_ids = tokenize(test_data['multi_turn_no_sys'])
assert decode(ns_mt_ids) == '<s> [INST] abc [/INST] ipsum</s><s> [INST] 123 [/INST] sit</s>'
assert ns_mt_ids == [1, 518, 25580, 29962, 25638, 518, 29914, 25580, 29962, 23421, 2, 1, 518, 25580, 29962, 29871, 29896, 29906, 29941, 518, 29914, 25580, 29962, 7845, 2]
# fmt: on
def test_sharegpt_mistral(self):
"Make sure the sharegpt/mistral is tokenized and formatted correctly."
strat = prompt_strat("mistral", self.tokenizer)
def tokenize(conv):
return strat.tokenize_prompt(deepcopy(conv))["input_ids"]
def decode(ids):
return strat.tokenizer.decode(ids)
# fmt: off
# System message, multi-turn conversations
mt_ids = tokenize(test_data['multi_turn_sys'])
assert decode(mt_ids) == '<s> [INST] lorem\nabc [/INST] ipsum</s> [INST] 123 [/INST] sit</s>'
assert mt_ids == [1, 518, 25580, 29962, 301, 3668, 13, 10736, 518, 29914, 25580, 29962, 23421, 2, 518, 25580, 29962, 29871, 29896, 29906, 29941, 518, 29914, 25580, 29962, 7845, 2]
# System message, single-turn conversations
st_ids = tokenize(test_data['single_turn_sys'])
assert decode(st_ids) == '<s> [INST] lorem\nabc [/INST] ipsum</s>'
assert st_ids == [1, 518, 25580, 29962, 301, 3668, 13, 10736, 518, 29914, 25580, 29962, 23421, 2]
# No system message, single-turn
ns_ids = tokenize(test_data['single_turn_no_sys'])
assert decode(ns_ids) == '<s> [INST] abc [/INST] ipsum</s>'
assert ns_ids == [1, 518, 25580, 29962, 25638, 518, 29914, 25580, 29962, 23421, 2]
# No system message, multi-turn
ns_mt_ids = tokenize(test_data['multi_turn_no_sys'])
assert decode(ns_mt_ids) == '<s> [INST] abc [/INST] ipsum</s> [INST] 123 [/INST] sit</s>'
assert ns_mt_ids == [1, 518, 25580, 29962, 25638, 518, 29914, 25580, 29962, 23421, 2, 518, 25580, 29962, 29871, 29896, 29906, 29941, 518, 29914, 25580, 29962, 7845, 2]
# fmt: on
def test_sharegpt_changes_roles(self):
conversation = {
"roles": ["USER", "CHARACTER"],
"conversations": [
{"from": "system", "value": "lorem"},
{"from": "gpt", "value": "ipsum"},
{"from": "human", "value": "dolor"},
{"from": "gpt", "value": "sit"},
],
}
prompter = ShareGPTPrompterV2()
strat = ShareGPTPromptTokenizingStrategy(
prompter,
self.tokenizer,
False,
2048,
)
with self._caplog.at_level(logging.WARNING):
res = strat.tokenize_prompt(conversation)
assert "CHARACTER" in self.tokenizer.decode(res["input_ids"])
def test_sharegpt_assistant_label_ignore(self):
conversation = {
"roles": ["user", "assistant"],
"conversations": [
{"from": "system", "value": "lorem"},
{"from": "gpt", "value": "ipsum"},
{"from": "human", "value": "dolor"},
{"from": "gpt", "value": "sit"},
],
}
prompter = ShareGPTPrompterV2()
strat = ShareGPTPromptTokenizingStrategy(
prompter,
self.tokenizer,
False,
2048,
)
with self._caplog.at_level(logging.WARNING):
res = strat.tokenize_prompt(conversation)
idx = res["input_ids"].index(20255) # assistant token
assert res["labels"][idx] == -100
def test_no_sys_prompt(self):
"""
tests the interface between the user and assistant parts
"""
prompter = NoSystemPrompter()
# pylint: disable=duplicate-code
strat = AlpacaPromptTokenizingStrategy(
prompter,
self.tokenizer,
False,
2048,
)
sample = {
"instruction": "hello cruel. lorem ipsum dolor sit amet.",
"output": "world!",
}
example = strat.tokenize_prompt(sample)
world_idx = example["input_ids"].index(3186)
assert example["labels"][world_idx] == 3186
assert example["labels"][world_idx - 1] == -100
def test_alpaca(self):
"""
tests the interface between the user and assistant parts
"""
# pylint: disable=duplicate-code
prompter = AlpacaPrompter()
strat = AlpacaPromptTokenizingStrategy(
prompter,
self.tokenizer,
False,
2048,
)
sample = {"instruction": "hello!", "output": "Hi! How can I help?"}
example = strat.tokenize_prompt(sample)
world_idx = example["input_ids"].index(6324)
assert example["labels"][world_idx] == 6324
assert example["labels"][world_idx - 1] == -100
class InstructionWSystemPromptTokenizingStrategyTest(unittest.TestCase):
"""
Test class for prompt tokenization strategies with sys prompt from the dataset
"""
def setUp(self) -> None:
# pylint: disable=duplicate-code
self.tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-7b")
self.tokenizer.add_special_tokens(
{
"bos_token": "<s>",
"eos_token": "</s>",
"unk_token": "<unk>",
}
)
def test_system_alpaca(self):
prompter = SystemDataPrompter(PromptStyle.CHAT.value)
strat = InstructionWSystemPromptTokenizingStrategy(
prompter,
self.tokenizer,
False,
2048,
)
sample = {
"system": "use cot",
"instruction": "hello!",
"output": "Hi! How can I help?",
}
example = strat.tokenize_prompt(sample)
assert example["input_ids"][0:5] == [
1,
28962,
1254,
12665,
29901,
] # "<s>SYSTEM:"
assert example["input_ids"][5:7] == [671, 20118] # " use cot"
assert example["input_ids"][8] == 11889 # USER
class Llama2ChatTokenizationTest(unittest.TestCase):
"""
Test class for prompt tokenization strategies with sys prompt from the dataset
"""
def setUp(self) -> None:
# pylint: disable=duplicate-code
self.tokenizer = LlamaTokenizer.from_pretrained("NousResearch/Llama-2-7b-hf")
# woraround because official Meta repos are not open
def test_llama2_chat_integration(self):
with open(
Path(__file__).parent / "fixtures/conversation.json", encoding="utf-8"
) as fin:
data = fin.read()
conversation = json.loads(data)
with open(
Path(__file__).parent / "fixtures/conversation.tokenized_llama2chat.json",
encoding="utf-8",
) as fin:
data = fin.read()
tokenized_conversation = json.loads(data)
prompter = Llama2ChatPrompter()
strat = LLama2ChatTokenizingStrategy(
prompter,
self.tokenizer,
False,
4096,
)
example = strat.tokenize_prompt(conversation)
for fields in ["input_ids", "attention_mask", "labels"]:
self.assertEqual(len(example[fields]), len(tokenized_conversation[fields]))
self.assertEqual(example[fields], tokenized_conversation[fields])
def compare_with_transformers_integration(self):
# this needs transformers >= v4.31.0
from transformers.models.llama.tokenization_llama import B_SYS, E_SYS
from transformers.pipelines.conversational import Conversation
# from transformers.models.llama.tokenization_llama import DEFAULT_SYSTEM_PROMPT
# broken as of 23/7/20
# see https://github.com/huggingface/transformers/pull/24935
# pylint: disable=C0103
DEFAULT_SYSTEM_PROMPT = """\
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."""
with open(
Path(__file__).parent / "fixtures/conversation.json", encoding="utf-8"
) as fin:
data = fin.read()
conversation = json.loads(data)
with open(
Path(__file__).parent / "fixtures/conversation.tokenized_llama2chat.json",
encoding="utf-8",
) as fin:
data = fin.read()
tokenized_conversation = json.loads(data)
user_input = []
answers = []
for msg in conversation["conversations"]:
if msg["from"] == "human":
user_input.append(msg["value"])
else:
answers.append(msg["value"])
hf_conf = Conversation(
text=user_input[-1],
past_user_inputs=[B_SYS + DEFAULT_SYSTEM_PROMPT + E_SYS + user_input[0]]
+ user_input[1:-1],
generated_responses=answers,
)
# pylint: disable=W0212
hf_tokens = self.tokenizer._build_conversation_input_ids(hf_conf)
self.assertEqual(
hf_tokens, tokenized_conversation["input_ids"][: len(hf_tokens)]
)
if __name__ == "__main__":
unittest.main()
|