File size: 7,260 Bytes
629450c
 
 
 
ed70a08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2b64e4
ed70a08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86b7d22
ed70a08
86b7d22
ed70a08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86b7d22
ed70a08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86b7d22
ed70a08
86b7d22
ed70a08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86b7d22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
---
title: Template-free prompt construction
description: "Template-free prompt construction with the `input_output` format"
---

<!-- TOC -->

- [Background](#background)
    - [Masking Inputs](#masking-inputs)
    - [You may not want prompt templates](#you-may-not-want-prompt-templates)
    - [The `input_output` format](#the-input_output-format)
- [Usage](#usage)
    - [1. Prepare Data](#1-prepare-data)
    - [2. Use `type: input_output`](#2-use-type-input_output)
    - [3. Check the prompts](#3-check-the-prompts)

<!-- /TOC -->

<a id="markdown-background" name="background"></a>

## Background

<a id="markdown-masking-inputs" name="masking-inputs"></a>

### Masking Inputs

One of the most popular features of
[axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) is
setting the following configuration value:


```yaml
train_on_inputs: false
```

If you declare a [dataset formats](https://github.com/OpenAccess-AI-Collective/axolotl?tab=readme-ov-file#dataset)
such as `alpaca` or `chatml`, axolotl knows what is an input
(i.e. human) vs. an output (i.e. the assistant) and masks the input
labels so that your model can focus on predicting the outputs only.

<a id="markdown-you-may-not-want-prompt-templates" name="you-may-not-want-prompt-templates"></a>

### You may not want prompt templates

However, there are many situations where you don't want to use one of
these formats or templates. This is because they can:

-   Add unnecessary boilerplate to your prompts.
-   Create artifacts like special delimiters `<|im_start|>` that can
    quickly become footguns if you don't include them correctly at
    inference time.
-   Enforce a *chat* interface when you do not want one. Sometimes you
    just want to fine-tune a model to a very specific task and do NOT
    want multi-turn conversations, roles, etc.
-   Limit you to only certain roles that the template allows.

<a id="markdown-the-inputoutput-format" name="the-inputoutput-format"></a>

### The `input_output` format

You can construct your prompts without a template by using the
`input_output` format, by setting `type: input_output` in your
configuration file like this:

**config.yml**

```yaml
train_on_inputs: false # Mask segments of your data
datasets:
  - path: output.jsonl
    type: input_output  # use template free prompt construction
```

Unlike `type: completion`, which is also template-free,
`type: input_output` allows you to mask segments of your text. More
details on how this works are described below.

<a id="markdown-usage" name="usage"></a>

## Usage

This is how you can use the `input_output` format:

<a id="markdown-1-prepare-data" name="1-prepare-data"></a>

### 1. Prepare Data

To use the `input_output` format, collect your data in the following
format into a jsonl file (below is the first row from the file
`output`.jsonl` pretty printed):

```bash
$ head -n1 output.jsonl | python -m json.tool
```

:::{.cell-output .cell-output-stdout}
    {
        "segments": [
            {
                "label": true,
                "text": "<s>Hello\n"
            },
            {
                "label": true,
                "text": "hi there!. "
            },
            {
                "label": false,
                "text": "goodbye "
            },
            {
                "label": true,
                "text": "farewell</s>"
            }
        ]
    }
:::

Set `label:false` when you want to mask a segment of text so that the
model isn't trained on it. Some things to keep in mind:

> [!IMPORTANT]
> 1.  **EOS, BOS, spaces, newlines etc. are entirely up to you. Axolotl
    concatenates all the segments as-is.** The tokenizer doesn't add
    anything additional. Notice how I added spaces, newlines, `<s>`
    (BOS), and `</s>` (EOS) myself.
> 2.  Make sure you check the materialized output to validate that the
    prompt is getting assembled how you like.

<a id="markdown-2-use-type-inputoutput" name="2-use-type-inputoutput"></a>

### 2. Use `type: input_output`

Let's materialize data with our `output.jsonl` file by setting
`type: input_output` in our axolotl config:

```yaml
# training_config.yaml
base_model: mistralai/Mistral-7B-v0.1
data_seed: 49
seed: 49

datasets:
  - path: output.jsonl
    type: input_output
val_set_size: 0.1

sequence_len: 896
sample_packing: false

micro_batch_size: 2
gradient_accumulation_steps: 3
eval_batch_size: 2
num_epochs: 1
learning_rate: 0.0002

train_on_inputs: false
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"
```

You can use the following command to materialize your data. The
`--debug` flag will print the tokens, along with the labels so you can
verify that the correct items are being ignored:

```bash
$ python -m axolotl.cli.preprocess training_config.yaml --debug

...
[2024-03-05 23:36:46,969] [INFO] [axolotl.check_example_labels:35] [PID:607731] [RANK:0] <s>(1, 1) Hello(22557, 22557)
(13, 13) hi(12014, 12014) there(736, 736) !(28808, 28808) .(28723, 28723) (28705, 28705) good(-100, 1179) bye(-100, 17664) (-100, 28705) fare(19111, 19111) well(5458, 5458) </s>(2, 2)

```

The format is `decoded_token`(`label`, `token_id`), for example,
`<s>(1, 1)` means that the token is `<s>`, the label is `1` and the
token_id is `1`. When the label is `-100` then that token is ignored for
training.

<a id="markdown-3-check-the-prompts" name="3-check-the-prompts"></a>

### 3. Check the prompts

Here is another way to check the materialized output:

```python
from transformers import AutoTokenizer
from datasets import load_from_disk
import yaml

directory = !ls last_run_prepared/
with open('training_config.yaml', 'r') as f:
    cfg = yaml.safe_load(f)
model_id = cfg['base_model']
tok = AutoTokenizer.from_pretrained(model_id)
ds = load_from_disk(f'last_run_prepared/{directory[0]}/')
```

```python
>>> row = ds[0]
>>> print(tok.decode(row['input_ids']))
<s> Hello
    hi there!.  goodbye  farewell</s>
```

We can check that the right tokens are ingored by comparing the labels
to each token:

```python
import pandas as pd
pd.DataFrame([{'token': tok.decode(i), 'label': l, 'id':i} for i,l in
              zip(row['input_ids'], row['labels'])])
```

| token | label | id    |
|-------|-------|-------|
| 0     | \<s\> | 1     |
| 1     | Hello | 22557 |
| 2     | \\n   | 13    |
| 3     | hi    | 12014 |
| 4     | there | 736   |
| 5     | !     | 28808 |
| 6     | .     | 28723 |
| 7     |       | 28705 |
| 8     | good  | -100  |
| 9     | bye   | -100  |
| 10    |       | -100  |
| 11    | fare  | 19111 |
| 12    | well  | 5458  |
| 13    | \</s\>| 2     |



If we look at the input data, the above table seems correct! (The jsonl
version is repeated below for reference):


```bash
$ head -n1 output.jsonl | python -m json.tool
```

:::{.cell-output .cell-output-stdout}
    {
        "segments": [
            {
                "label": true,
                "text": "<s>Hello\n"
            },
            {
                "label": true,
                "text": "hi there!. "
            },
            {
                "label": false,
                "text": "goodbye "
            },
            {
                "label": true,
                "text": "farewell</s>"
            }
        ]
    }
:::