File size: 14,270 Bytes
1f3c3f5 3c71c8d 52dd92a 3c71c8d 52dd92a 8cec513 52dd92a 1f3c3f5 3c71c8d 52dd92a 3c71c8d 52dd92a 0dd35c7 52dd92a 0dd35c7 52dd92a 0dd35c7 52dd92a 0dd35c7 52dd92a 0dd35c7 52dd92a 0dd35c7 52dd92a 0dd35c7 52dd92a 1c33eb8 fd5f965 1c33eb8 fd5f965 1c33eb8 3aad5f3 6fa40bf 3aad5f3 babf0fd eea2731 14668fa fd2c981 eea2731 cb9d3af 19cf0bd cb9d3af 19cf0bd cb9d3af 19cf0bd cb9d3af ad5ca4f 2bb0b78 3437149 2bb0b78 cfbce02 e7d3e2d 383f88d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 |
"""Module for testing the validation module"""
import logging
import unittest
from typing import Optional
import pytest
from axolotl.utils.config import validate_config
from axolotl.utils.dict import DictDefault
class ValidationTest(unittest.TestCase):
"""
Test the validation module
"""
_caplog: Optional[pytest.LogCaptureFixture] = None
@pytest.fixture(autouse=True)
def inject_fixtures(self, caplog):
self._caplog = caplog
def test_load_4bit_deprecate(self):
cfg = DictDefault(
{
"load_4bit": True,
}
)
with pytest.raises(ValueError):
validate_config(cfg)
def test_batch_size_unused_warning(self):
cfg = DictDefault(
{
"batch_size": 32,
}
)
with self._caplog.at_level(logging.WARNING):
validate_config(cfg)
assert "batch_size is not recommended" in self._caplog.records[0].message
def test_qlora(self):
base_cfg = DictDefault(
{
"adapter": "qlora",
}
)
cfg = base_cfg | DictDefault( # pylint: disable=unsupported-binary-operation
{
"load_in_8bit": True,
}
)
with pytest.raises(ValueError, match=r".*8bit.*"):
validate_config(cfg)
cfg = base_cfg | DictDefault( # pylint: disable=unsupported-binary-operation
{
"gptq": True,
}
)
with pytest.raises(ValueError, match=r".*gptq.*"):
validate_config(cfg)
cfg = base_cfg | DictDefault( # pylint: disable=unsupported-binary-operation
{
"load_in_4bit": False,
}
)
with pytest.raises(ValueError, match=r".*4bit.*"):
validate_config(cfg)
cfg = base_cfg | DictDefault( # pylint: disable=unsupported-binary-operation
{
"load_in_4bit": True,
}
)
validate_config(cfg)
def test_qlora_merge(self):
base_cfg = DictDefault(
{
"adapter": "qlora",
"merge_lora": True,
}
)
cfg = base_cfg | DictDefault( # pylint: disable=unsupported-binary-operation
{
"load_in_8bit": True,
}
)
with pytest.raises(ValueError, match=r".*8bit.*"):
validate_config(cfg)
cfg = base_cfg | DictDefault( # pylint: disable=unsupported-binary-operation
{
"gptq": True,
}
)
with pytest.raises(ValueError, match=r".*gptq.*"):
validate_config(cfg)
cfg = base_cfg | DictDefault( # pylint: disable=unsupported-binary-operation
{
"load_in_4bit": True,
}
)
with pytest.raises(ValueError, match=r".*4bit.*"):
validate_config(cfg)
def test_hf_use_auth_token(self):
cfg = DictDefault(
{
"push_dataset_to_hub": "namespace/repo",
}
)
with pytest.raises(ValueError, match=r".*hf_use_auth_token.*"):
validate_config(cfg)
cfg = DictDefault(
{
"push_dataset_to_hub": "namespace/repo",
"hf_use_auth_token": True,
}
)
validate_config(cfg)
def test_gradient_accumulations_or_batch_size(self):
cfg = DictDefault(
{
"gradient_accumulation_steps": 1,
"batch_size": 1,
}
)
with pytest.raises(
ValueError, match=r".*gradient_accumulation_steps or batch_size.*"
):
validate_config(cfg)
cfg = DictDefault(
{
"batch_size": 1,
}
)
validate_config(cfg)
cfg = DictDefault(
{
"gradient_accumulation_steps": 1,
}
)
validate_config(cfg)
def test_falcon_fsdp(self):
regex_exp = r".*FSDP is not supported for falcon models.*"
# Check for lower-case
cfg = DictDefault(
{
"base_model": "tiiuae/falcon-7b",
"fsdp": ["full_shard", "auto_wrap"],
}
)
with pytest.raises(ValueError, match=regex_exp):
validate_config(cfg)
# Check for upper-case
cfg = DictDefault(
{
"base_model": "Falcon-7b",
"fsdp": ["full_shard", "auto_wrap"],
}
)
with pytest.raises(ValueError, match=regex_exp):
validate_config(cfg)
cfg = DictDefault(
{
"base_model": "tiiuae/falcon-7b",
}
)
validate_config(cfg)
def test_mpt_gradient_checkpointing(self):
regex_exp = r".*gradient_checkpointing is not supported for MPT models*"
# Check for lower-case
cfg = DictDefault(
{
"base_model": "mosaicml/mpt-7b",
"gradient_checkpointing": True,
}
)
with pytest.raises(ValueError, match=regex_exp):
validate_config(cfg)
def test_flash_optimum(self):
cfg = DictDefault(
{
"flash_optimum": True,
"adapter": "lora",
}
)
with self._caplog.at_level(logging.WARNING):
validate_config(cfg)
assert any(
"BetterTransformers probably doesn't work with PEFT adapters"
in record.message
for record in self._caplog.records
)
cfg = DictDefault(
{
"flash_optimum": True,
}
)
with self._caplog.at_level(logging.WARNING):
validate_config(cfg)
assert any(
"probably set bfloat16 or float16" in record.message
for record in self._caplog.records
)
cfg = DictDefault(
{
"flash_optimum": True,
"fp16": True,
}
)
regex_exp = r".*AMP is not supported.*"
with pytest.raises(ValueError, match=regex_exp):
validate_config(cfg)
cfg = DictDefault(
{
"flash_optimum": True,
"bf16": True,
}
)
regex_exp = r".*AMP is not supported.*"
with pytest.raises(ValueError, match=regex_exp):
validate_config(cfg)
def test_adamw_hyperparams(self):
cfg = DictDefault(
{
"optimizer": None,
"adam_epsilon": 0.0001,
}
)
with self._caplog.at_level(logging.WARNING):
validate_config(cfg)
assert any(
"adamw hyperparameters found, but no adamw optimizer set"
in record.message
for record in self._caplog.records
)
cfg = DictDefault(
{
"optimizer": "adafactor",
"adam_beta1": 0.0001,
}
)
with self._caplog.at_level(logging.WARNING):
validate_config(cfg)
assert any(
"adamw hyperparameters found, but no adamw optimizer set"
in record.message
for record in self._caplog.records
)
cfg = DictDefault(
{
"optimizer": "adamw_bnb_8bit",
"adam_beta1": 0.9,
"adam_beta2": 0.99,
"adam_epsilon": 0.0001,
}
)
validate_config(cfg)
cfg = DictDefault(
{
"optimizer": "adafactor",
}
)
validate_config(cfg)
def test_packing(self):
cfg = DictDefault(
{
"max_packed_sequence_len": 2048,
}
)
with self._caplog.at_level(logging.WARNING):
validate_config(cfg)
assert any(
"max_packed_sequence_len will be deprecated in favor of sample_packing"
in record.message
for record in self._caplog.records
)
cfg = DictDefault(
{
"sample_packing": True,
"pad_to_sequence_len": None,
}
)
with self._caplog.at_level(logging.WARNING):
validate_config(cfg)
assert any(
"`pad_to_sequence_len: true` is recommended when using sample_packing"
in record.message
for record in self._caplog.records
)
cfg = DictDefault(
{
"max_packed_sequence_len": 2048,
"sample_packing": True,
}
)
regex_exp = r".*set only one of max_packed_sequence_len \(deprecated soon\) or sample_packing.*"
with pytest.raises(ValueError, match=regex_exp):
validate_config(cfg)
def test_merge_lora_no_bf16_fail(self):
"""
This is assumed to be run on a CPU machine, so bf16 is not supported.
"""
cfg = DictDefault(
{
"bf16": True,
}
)
with pytest.raises(ValueError, match=r".*AMP is not supported on this GPU*"):
validate_config(cfg)
cfg = DictDefault(
{
"bf16": True,
"merge_lora": True,
}
)
validate_config(cfg)
def test_sharegpt_deprecation(self):
cfg = DictDefault(
{"datasets": [{"path": "lorem/ipsum", "type": "sharegpt:chat"}]}
)
with self._caplog.at_level(logging.WARNING):
validate_config(cfg)
assert any(
"`type: sharegpt:chat` will soon be deprecated." in record.message
for record in self._caplog.records
)
assert cfg.datasets[0].type == "sharegpt"
cfg = DictDefault(
{"datasets": [{"path": "lorem/ipsum", "type": "sharegpt_simple:load_role"}]}
)
with self._caplog.at_level(logging.WARNING):
validate_config(cfg)
assert any(
"`type: sharegpt_simple` will soon be deprecated." in record.message
for record in self._caplog.records
)
assert cfg.datasets[0].type == "sharegpt:load_role"
def test_no_conflict_save_strategy(self):
cfg = DictDefault(
{
"save_strategy": "epoch",
"save_steps": 10,
}
)
with pytest.raises(
ValueError, match=r".*save_strategy and save_steps mismatch.*"
):
validate_config(cfg)
cfg = DictDefault(
{
"save_strategy": "no",
"save_steps": 10,
}
)
with pytest.raises(
ValueError, match=r".*save_strategy and save_steps mismatch.*"
):
validate_config(cfg)
cfg = DictDefault(
{
"save_strategy": "steps",
}
)
validate_config(cfg)
cfg = DictDefault(
{
"save_strategy": "steps",
"save_steps": 10,
}
)
validate_config(cfg)
cfg = DictDefault(
{
"save_steps": 10,
}
)
validate_config(cfg)
cfg = DictDefault(
{
"save_strategy": "no",
}
)
validate_config(cfg)
def test_no_conflict_eval_strategy(self):
cfg = DictDefault(
{
"evaluation_strategy": "epoch",
"eval_steps": 10,
}
)
with pytest.raises(
ValueError, match=r".*evaluation_strategy and eval_steps mismatch.*"
):
validate_config(cfg)
cfg = DictDefault(
{
"evaluation_strategy": "no",
"eval_steps": 10,
}
)
with pytest.raises(
ValueError, match=r".*evaluation_strategy and eval_steps mismatch.*"
):
validate_config(cfg)
cfg = DictDefault(
{
"evaluation_strategy": "steps",
}
)
validate_config(cfg)
cfg = DictDefault(
{
"evaluation_strategy": "steps",
"eval_steps": 10,
}
)
validate_config(cfg)
cfg = DictDefault(
{
"eval_steps": 10,
}
)
validate_config(cfg)
cfg = DictDefault(
{
"evaluation_strategy": "no",
}
)
validate_config(cfg)
cfg = DictDefault(
{
"evaluation_strategy": "epoch",
"val_set_size": 0,
}
)
with pytest.raises(
ValueError,
match=r".*eval_steps and evaluation_strategy are not supported with val_set_size == 0.*",
):
validate_config(cfg)
cfg = DictDefault(
{
"eval_steps": 10,
"val_set_size": 0,
}
)
with pytest.raises(
ValueError,
match=r".*eval_steps and evaluation_strategy are not supported with val_set_size == 0.*",
):
validate_config(cfg)
cfg = DictDefault(
{
"val_set_size": 0,
}
)
validate_config(cfg)
cfg = DictDefault(
{
"eval_steps": 10,
"val_set_size": 0.01,
}
)
validate_config(cfg)
cfg = DictDefault(
{
"evaluation_strategy": "epoch",
"val_set_size": 0.01,
}
)
validate_config(cfg)
|