Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,922 Bytes
df13f4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
# Copyright (C) 2022-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
# --------------------------------------------------------
# CroCo model for downstream tasks
# --------------------------------------------------------
import torch
from .croco import CroCoNet
def croco_args_from_ckpt(ckpt):
if 'croco_kwargs' in ckpt: # CroCo v2 released models
return ckpt['croco_kwargs']
elif 'args' in ckpt and hasattr(ckpt['args'], 'model'): # pretrained using the official code release
s = ckpt['args'].model # eg "CroCoNet(enc_embed_dim=1024, enc_num_heads=16, enc_depth=24)"
assert s.startswith('CroCoNet(')
return eval('dict'+s[len('CroCoNet'):]) # transform it into the string of a dictionary and evaluate it
else: # CroCo v1 released models
return dict()
class CroCoDownstreamMonocularEncoder(CroCoNet):
def __init__(self,
head,
**kwargs):
""" Build network for monocular downstream task, only using the encoder.
It takes an extra argument head, that is called with the features
and a dictionary img_info containing 'width' and 'height' keys
The head is setup with the croconet arguments in this init function
NOTE: It works by *calling super().__init__() but with redefined setters
"""
super(CroCoDownstreamMonocularEncoder, self).__init__(**kwargs)
head.setup(self)
self.head = head
def _set_mask_generator(self, *args, **kwargs):
""" No mask generator """
return
def _set_mask_token(self, *args, **kwargs):
""" No mask token """
self.mask_token = None
return
def _set_decoder(self, *args, **kwargs):
""" No decoder """
return
def _set_prediction_head(self, *args, **kwargs):
""" No 'prediction head' for downstream tasks."""
return
def forward(self, img):
"""
img if of size batch_size x 3 x h x w
"""
B, C, H, W = img.size()
img_info = {'height': H, 'width': W}
need_all_layers = hasattr(self.head, 'return_all_blocks') and self.head.return_all_blocks
out, _, _ = self._encode_image(img, do_mask=False, return_all_blocks=need_all_layers)
return self.head(out, img_info)
class CroCoDownstreamBinocular(CroCoNet):
def __init__(self,
head,
**kwargs):
""" Build network for binocular downstream task
It takes an extra argument head, that is called with the features
and a dictionary img_info containing 'width' and 'height' keys
The head is setup with the croconet arguments in this init function
"""
super(CroCoDownstreamBinocular, self).__init__(**kwargs)
head.setup(self)
self.head = head
def _set_mask_generator(self, *args, **kwargs):
""" No mask generator """
return
def _set_mask_token(self, *args, **kwargs):
""" No mask token """
self.mask_token = None
return
def _set_prediction_head(self, *args, **kwargs):
""" No prediction head for downstream tasks, define your own head """
return
def encode_image_pairs(self, img1, img2, return_all_blocks=False):
""" run encoder for a pair of images
it is actually ~5% faster to concatenate the images along the batch dimension
than to encode them separately
"""
## the two commented lines below is the naive version with separate encoding
#out, pos, _ = self._encode_image(img1, do_mask=False, return_all_blocks=return_all_blocks)
#out2, pos2, _ = self._encode_image(img2, do_mask=False, return_all_blocks=False)
## and now the faster version
out, pos, _ = self._encode_image( torch.cat( (img1,img2), dim=0), do_mask=False, return_all_blocks=return_all_blocks )
if return_all_blocks:
out,out2 = list(map(list, zip(*[o.chunk(2, dim=0) for o in out])))
out2 = out2[-1]
else:
out,out2 = out.chunk(2, dim=0)
pos,pos2 = pos.chunk(2, dim=0)
return out, out2, pos, pos2
def forward(self, img1, img2):
B, C, H, W = img1.size()
img_info = {'height': H, 'width': W}
return_all_blocks = hasattr(self.head, 'return_all_blocks') and self.head.return_all_blocks
out, out2, pos, pos2 = self.encode_image_pairs(img1, img2, return_all_blocks=return_all_blocks)
if return_all_blocks:
decout = self._decoder(out[-1], pos, None, out2, pos2, return_all_blocks=return_all_blocks)
decout = out+decout
else:
decout = self._decoder(out, pos, None, out2, pos2, return_all_blocks=return_all_blocks)
return self.head(decout, img_info) |