Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,321 Bytes
df13f4b 84e37ca df13f4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
import trimesh
import torch
import numpy as np
import os
import math
import torchvision
from tqdm import tqdm
import cv2 # Assuming OpenCV is used for image saving
from PIL import Image
import pytorch3d
import random
from PIL import ImageGrab
torchvision
from torchvision.utils import save_image
from pytorch3d.renderer import (
PointsRasterizationSettings,
PointsRenderer,
PointsRasterizer,
AlphaCompositor,
PerspectiveCameras,
)
import imageio
import torch.nn.functional as F
from torchvision.transforms import ToPILImage
import copy
from scipy.interpolate import interp1d
from scipy.interpolate import UnivariateSpline
from scipy.spatial.transform import Rotation as R
from scipy.spatial.transform import Slerp
import sys
sys.path.append('./extern/dust3r')
from dust3r.utils.device import to_numpy
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
def save_video(data,images_path,folder=None):
if isinstance(data, np.ndarray):
tensor_data = (torch.from_numpy(data) * 255).to(torch.uint8)
elif isinstance(data, torch.Tensor):
tensor_data = (data.detach().cpu() * 255).to(torch.uint8)
elif isinstance(data, list):
folder = [folder]*len(data)
images = [np.array(Image.open(os.path.join(folder_name,path))) for folder_name,path in zip(folder,data)]
stacked_images = np.stack(images, axis=0)
tensor_data = torch.from_numpy(stacked_images).to(torch.uint8)
torchvision.io.write_video(images_path, tensor_data, fps=8, video_codec='h264', options={'crf': '10'})
def get_input_dict(img_tensor,idx,dtype = torch.float32):
return {'img':F.interpolate(img_tensor.to(dtype), size=(288, 512), mode='bilinear', align_corners=False), 'true_shape': np.array([[288, 512]], dtype=np.int32), 'idx': idx, 'instance': str(idx), 'img_ori':img_tensor.to(dtype)}
# return {'img':F.interpolate(img_tensor.to(dtype), size=(288, 512), mode='bilinear', align_corners=False), 'true_shape': np.array([[288, 512]], dtype=np.int32), 'idx': idx, 'instance': str(idx), 'img_ori':ToPILImage()((img_tensor.squeeze(0)+ 1) / 2)}
def rotate_theta(c2ws_input, theta, phi, r, device):
# theta: 图像的倾角,新的y’轴(位于yoz平面)与y轴的夹角
#让相机在以[0,0,depth_avg]为球心的球面上运动,可以先让其在[0,0,0]为球心的球面运动,方便计算旋转矩阵,之后在平移
c2ws = copy.deepcopy(c2ws_input)
c2ws[:,2, 3] = c2ws[:,2, 3] + r #将相机坐标系沿着世界坐标系-z方向平移r
# 计算旋转向量
theta = torch.deg2rad(torch.tensor(theta)).to(device)
phi = torch.deg2rad(torch.tensor(phi)).to(device)
v = torch.tensor([0, torch.cos(theta), torch.sin(theta)])
# 计算反对称矩阵
v_x = torch.zeros(3, 3).to(device)
v_x[0, 1] = -v[2]
v_x[0, 2] = v[1]
v_x[1, 0] = v[2]
v_x[1, 2] = -v[0]
v_x[2, 0] = -v[1]
v_x[2, 1] = v[0]
# 计算反对称矩阵的平方
v_x_square = torch.matmul(v_x, v_x)
# 计算旋转矩阵
R = torch.eye(3).to(device) + torch.sin(phi) * v_x + (1 - torch.cos(phi)) * v_x_square
# 转换为齐次表示
R_h = torch.eye(4)
R_h[:3, :3] = R
Rot_mat = R_h.to(device)
c2ws = torch.matmul(Rot_mat, c2ws)
c2ws[:,2, 3]= c2ws[:,2, 3] - r #最后减去r,相当于绕着z=|r|为中心旋转
return c2ws
def sphere2pose(c2ws_input, theta, phi, r, device):
c2ws = copy.deepcopy(c2ws_input)
#先沿着世界坐标系z轴方向平移再旋转
c2ws[:,2,3] += r
theta = torch.deg2rad(torch.tensor(theta)).to(device)
sin_value_x = torch.sin(theta)
cos_value_x = torch.cos(theta)
rot_mat_x = torch.tensor([[1, 0, 0, 0],
[0, cos_value_x, -sin_value_x, 0],
[0, sin_value_x, cos_value_x, 0],
[0, 0, 0, 1]]).unsqueeze(0).repeat(c2ws.shape[0],1,1).to(device)
phi = torch.deg2rad(torch.tensor(phi)).to(device)
sin_value_y = torch.sin(phi)
cos_value_y = torch.cos(phi)
rot_mat_y = torch.tensor([[cos_value_y, 0, sin_value_y, 0],
[0, 1, 0, 0],
[-sin_value_y, 0, cos_value_y, 0],
[0, 0, 0, 1]]).unsqueeze(0).repeat(c2ws.shape[0],1,1).to(device)
c2ws = torch.matmul(rot_mat_x,c2ws)
c2ws = torch.matmul(rot_mat_y,c2ws)
return c2ws
def generate_candidate_poses(c2ws_anchor,H,W,fs,c,theta, phi,num_candidates,device):
# Initialize a camera.
"""
The camera coordinate sysmte in COLMAP is right-down-forward
Pytorch3D is left-up-forward
"""
if num_candidates == 2:
thetas = np.array([0,-theta])
phis = np.array([phi,phi])
elif num_candidates == 3:
thetas = np.array([0,-theta,theta/2.]) #avoid too many downward
phis = np.array([phi,phi,phi])
else:
raise ValueError("NBV mode only supports 2 or 3 candidates per iteration.")
c2ws_list = []
for th, ph in zip(thetas,phis):
c2w_new = sphere2pose(c2ws_anchor, np.float32(th), np.float32(ph), r=None, device= device)
c2ws_list.append(c2w_new)
c2ws = torch.cat(c2ws_list,dim=0)
num_views = c2ws.shape[0]
R, T = c2ws[:,:3, :3], c2ws[:,:3, 3:]
## 将dust3r坐标系转成pytorch3d坐标系
R = torch.stack([-R[:,:, 0], -R[:,:, 1], R[:,:, 2]], 2) # from RDF to LUF for Rotation
new_c2w = torch.cat([R, T], 2)
w2c = torch.linalg.inv(torch.cat((new_c2w, torch.Tensor([[[0,0,0,1]]]).to(device).repeat(new_c2w.shape[0],1,1)),1))
R_new, T_new = w2c[:,:3, :3].permute(0,2,1), w2c[:,:3, 3] # convert R to row-major matrix
image_size = ((H, W),) # (h, w)
cameras = PerspectiveCameras(focal_length=fs, principal_point=c, in_ndc=False, image_size=image_size, R=R_new, T=T_new, device=device)
return cameras,thetas,phis
def generate_traj_specified(c2ws_anchor,H,W,fs,c,theta, phi,d_r,frame,device):
# Initialize a camera.
"""
The camera coordinate sysmte in COLMAP is right-down-forward
Pytorch3D is left-up-forward
"""
thetas = np.linspace(0,theta,frame)
phis = np.linspace(0,phi,frame)
rs = np.linspace(0,d_r*c2ws_anchor[0,2,3].cpu(),frame)
c2ws_list = []
for th, ph, r in zip(thetas,phis,rs):
c2w_new = sphere2pose(c2ws_anchor, np.float32(th), np.float32(ph), np.float32(r), device)
c2ws_list.append(c2w_new)
c2ws = torch.cat(c2ws_list,dim=0)
num_views = c2ws.shape[0]
R, T = c2ws[:,:3, :3], c2ws[:,:3, 3:]
## 将dust3r坐标系转成pytorch3d坐标系
R = torch.stack([-R[:,:, 0], -R[:,:, 1], R[:,:, 2]], 2) # from RDF to LUF for Rotation
new_c2w = torch.cat([R, T], 2)
w2c = torch.linalg.inv(torch.cat((new_c2w, torch.Tensor([[[0,0,0,1]]]).to(device).repeat(new_c2w.shape[0],1,1)),1))
R_new, T_new = w2c[:,:3, :3].permute(0,2,1), w2c[:,:3, 3] # convert R to row-major matrix
image_size = ((H, W),) # (h, w)
cameras = PerspectiveCameras(focal_length=fs, principal_point=c, in_ndc=False, image_size=image_size, R=R_new, T=T_new, device=device)
return cameras,num_views
def generate_traj_txt(c2ws_anchor,H,W,fs,c,phi, theta, r,frame,device,viz_traj=False, save_dir = None):
# Initialize a camera.
"""
The camera coordinate sysmte in COLMAP is right-down-forward
Pytorch3D is left-up-forward
"""
c2ws_anchor = c2ws_anchor.to(device)
if len(phi)>3:
phis = txt_interpolation(phi,frame,mode='smooth')
phis[0] = phi[0]
phis[-1] = phi[-1]
else:
phis = txt_interpolation(phi,frame,mode='linear')
if len(theta)>3:
thetas = txt_interpolation(theta,frame,mode='smooth')
thetas[0] = theta[0]
thetas[-1] = theta[-1]
else:
thetas = txt_interpolation(theta,frame,mode='linear')
if len(r) >3:
rs = txt_interpolation(r,frame,mode='smooth')
rs[0] = r[0]
rs[-1] = r[-1]
else:
rs = txt_interpolation(r,frame,mode='linear')
rs = rs*c2ws_anchor[0,2,3].cpu().numpy()
c2ws_list = []
for th, ph, r in zip(thetas,phis,rs):
c2w_new = sphere2pose(c2ws_anchor, np.float32(th), np.float32(ph), np.float32(r), device)
c2ws_list.append(c2w_new)
c2ws = torch.cat(c2ws_list,dim=0)
if viz_traj:
poses = c2ws.cpu().numpy()
# visualizer(poses, os.path.join(save_dir,'viz_traj.png'))
frames = [visualizer_frame(poses, i) for i in range(len(poses))]
save_video(np.array(frames)/255.,os.path.join(save_dir,'viz_traj.mp4'))
num_views = c2ws.shape[0]
R, T = c2ws[:,:3, :3], c2ws[:,:3, 3:]
## 将dust3r坐标系转成pytorch3d坐标系
R = torch.stack([-R[:,:, 0], -R[:,:, 1], R[:,:, 2]], 2) # from RDF to LUF for Rotation
new_c2w = torch.cat([R, T], 2)
w2c = torch.linalg.inv(torch.cat((new_c2w, torch.Tensor([[[0,0,0,1]]]).to(device).repeat(new_c2w.shape[0],1,1)),1))
R_new, T_new = w2c[:,:3, :3].permute(0,2,1), w2c[:,:3, 3] # convert R to row-major matrix
image_size = ((H, W),) # (h, w)
cameras = PerspectiveCameras(focal_length=fs, principal_point=c, in_ndc=False, image_size=image_size, R=R_new, T=T_new, device=device)
return cameras,num_views
def setup_renderer(cameras, image_size):
# Define the settings for rasterization and shading.
raster_settings = PointsRasterizationSettings(
image_size=image_size,
radius = 0.01,
points_per_pixel = 10,
bin_size = 0
)
renderer = PointsRenderer(
rasterizer=PointsRasterizer(cameras=cameras, raster_settings=raster_settings),
compositor=AlphaCompositor()
)
render_setup = {'cameras': cameras, 'raster_settings': raster_settings, 'renderer': renderer}
return render_setup
def interpolate_sequence(sequence, k,device):
N, M = sequence.size()
weights = torch.linspace(0, 1, k+1).view(1, -1, 1).to(device)
left_values = sequence[:-1].unsqueeze(1).repeat(1, k+1, 1)
right_values = sequence[1:].unsqueeze(1).repeat(1, k+1, 1)
new_sequence = torch.einsum("ijk,ijl->ijl", (1 - weights), left_values) + torch.einsum("ijk,ijl->ijl", weights, right_values)
new_sequence = new_sequence.reshape(-1, M)
new_sequence = torch.cat([new_sequence, sequence[-1].view(1, -1)], dim=0)
return new_sequence
def focus_point_fn(c2ws: torch.Tensor) -> torch.Tensor:
"""Calculate nearest point to all focal axes in camera-to-world matrices."""
# Extract camera directions and origins from c2ws
directions, origins = c2ws[:, :3, 2:3], c2ws[:, :3, 3:4]
m = torch.eye(3).to(c2ws.device) - directions * torch.transpose(directions, 1, 2)
mt_m = torch.transpose(m, 1, 2) @ m
focus_pt = torch.inverse(mt_m.mean(0)) @ (mt_m @ origins).mean(0)[:, 0]
return focus_pt
def generate_camera_path(c2ws: torch.Tensor, n_inserts: int = 15, device='cuda') -> torch.Tensor:
n_poses = c2ws.shape[0]
interpolated_poses = []
for i in range(n_poses-1):
start_pose = c2ws[i]
end_pose = c2ws[(i + 1) % n_poses]
focus_point = focus_point_fn(torch.stack([start_pose,end_pose]))
interpolated_path = interpolate_poses(start_pose, end_pose, focus_point, n_inserts, device)
# Exclude the last pose (end_pose) for all pairs
interpolated_path = interpolated_path[:-1]
interpolated_poses.append(interpolated_path)
# Concatenate all the interpolated paths
interpolated_poses.append(c2ws[-1:])
full_path = torch.cat(interpolated_poses, dim=0)
return full_path
def interpolate_poses(start_pose: torch.Tensor, end_pose: torch.Tensor, focus_point: torch.Tensor, n_inserts: int = 15, device='cuda') -> torch.Tensor:
dtype = start_pose.dtype
start_distance = torch.sqrt((start_pose[0, 3] - focus_point[0])**2 + (start_pose[1, 3] - focus_point[1])**2 + (start_pose[2, 3] - focus_point[2])**2)
end_distance = torch.sqrt((end_pose[0, 3] - focus_point[0])**2 + (end_pose[1, 3] - focus_point[1])**2 + (end_pose[2, 3] - focus_point[2])**2)
start_rot = R.from_matrix(start_pose[:3, :3].cpu().numpy())
end_rot = R.from_matrix(end_pose[:3, :3].cpu().numpy())
slerp_obj = Slerp([0, 1], R.from_quat([start_rot.as_quat(), end_rot.as_quat()]))
inserted_c2ws = []
for t in torch.linspace(0., 1., n_inserts + 2, dtype=dtype): # Exclude the first and last point
interpolated_rot = slerp_obj(t).as_matrix()
interpolated_translation = (1 - t) * start_pose[:3, 3] + t * end_pose[:3, 3]
interpolated_distance = (1 - t) * start_distance + t * end_distance
direction = (interpolated_translation - focus_point) / torch.norm(interpolated_translation - focus_point)
interpolated_translation = focus_point + direction * interpolated_distance
inserted_pose = torch.eye(4, dtype=dtype).to(device)
inserted_pose[:3, :3] = torch.from_numpy(interpolated_rot).to(device)
inserted_pose[:3, 3] = interpolated_translation
inserted_c2ws.append(inserted_pose)
path = torch.stack(inserted_c2ws)
return path
def inv(mat):
""" Invert a torch or numpy matrix
"""
if isinstance(mat, torch.Tensor):
return torch.linalg.inv(mat)
if isinstance(mat, np.ndarray):
return np.linalg.inv(mat)
raise ValueError(f'bad matrix type = {type(mat)}')
def save_pointcloud_with_normals(imgs, pts3d, msk, save_path, mask_pc, reduce_pc):
pc = get_pc(imgs, pts3d, msk,mask_pc,reduce_pc) # Assuming get_pc is defined elsewhere and returns a trimesh point cloud
# Define a default normal, e.g., [0, 1, 0]
default_normal = [0, 1, 0]
# Prepare vertices, colors, and normals for saving
vertices = pc.vertices
colors = pc.colors
normals = np.tile(default_normal, (vertices.shape[0], 1))
# Construct the header of the PLY file
header = """ply
format ascii 1.0
element vertex {}
property float x
property float y
property float z
property uchar red
property uchar green
property uchar blue
property float nx
property float ny
property float nz
end_header
""".format(len(vertices))
# Write the PLY file
with open(save_path, 'w') as ply_file:
ply_file.write(header)
for vertex, color, normal in zip(vertices, colors, normals):
ply_file.write('{} {} {} {} {} {} {} {} {}\n'.format(
vertex[0], vertex[1], vertex[2],
int(color[0]), int(color[1]), int(color[2]),
normal[0], normal[1], normal[2]
))
def get_pc(imgs, pts3d, mask, mask_pc=False, reduce_pc=False):
imgs = to_numpy(imgs)
pts3d = to_numpy(pts3d)
mask = to_numpy(mask)
if mask_pc:
pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)])
col = np.concatenate([p[m] for p, m in zip(imgs, mask)])
else:
pts = np.concatenate([p for p in pts3d])
col = np.concatenate([p for p in imgs])
if reduce_pc:
pts = pts.reshape(-1, 3)[::3]
col = col.reshape(-1, 3)[::3]
else:
pts = pts.reshape(-1, 3)
col = col.reshape(-1, 3)
#mock normals:
normals = np.tile([0, 1, 0], (pts.shape[0], 1))
pct = trimesh.PointCloud(pts, colors=col)
# debug
# pct.export('output.ply')
# print('exporting output.ply')
pct.vertices_normal = normals # Manually add normals to the point cloud
return pct#, pts
def world_to_kth(poses, k):
# 将世界坐标系转到和第k个pose的相机坐标系一致
kth_pose = poses[k]
inv_kth_pose = torch.inverse(kth_pose)
new_poses = torch.bmm(inv_kth_pose.unsqueeze(0).expand_as(poses), poses)
return new_poses
def world_point_to_kth(poses, points, k, device):
# 将世界坐标系转到和第k个pose的相机坐标系一致,同时处理点云
kth_pose = poses[k]
inv_kth_pose = torch.inverse(kth_pose)
# 给所有pose左成kth_w2c,将其都变到kth_pose的camera coordinate下
new_poses = torch.bmm(inv_kth_pose.unsqueeze(0).expand_as(poses), poses)
N, W, H, _ = points.shape
points = points.view(N, W * H, 3)
homogeneous_points = torch.cat([points, torch.ones(N, W*H, 1).to(device)], dim=-1)
new_points = inv_kth_pose.unsqueeze(0).expand(N, -1, -1).unsqueeze(1)@ homogeneous_points.unsqueeze(-1)
new_points = new_points.squeeze(-1)[...,:3].view(N, W, H, _)
return new_poses, new_points
def world_point_to_obj(poses, points, k, r, elevation, device):
## 作用:将世界坐标系转到object的中心
## 先将世界坐标系转到指定相机
poses, points = world_point_to_kth(poses, points, k, device)
## 定义目标坐标系位姿, 原点位于object中心(远世界坐标系[0,0,r]),Y轴向上, Z轴垂直屏幕向外, X轴向右
elevation_rad = torch.deg2rad(torch.tensor(180-elevation)).to(device)
sin_value_x = torch.sin(elevation_rad)
cos_value_x = torch.cos(elevation_rad)
R = torch.tensor([[1, 0, 0,],
[0, cos_value_x, sin_value_x],
[0, -sin_value_x, cos_value_x]]).to(device)
t = torch.tensor([0, 0, r]).to(device)
pose_obj = torch.eye(4).to(device)
pose_obj[:3, :3] = R
pose_obj[:3, 3] = t
## 给所有点和pose乘以目标坐标系的逆(w2c),将它们变换到目标坐标系下
inv_obj_pose = torch.inverse(pose_obj)
new_poses = torch.bmm(inv_obj_pose.unsqueeze(0).expand_as(poses), poses)
N, W, H, _ = points.shape
points = points.view(N, W * H, 3)
homogeneous_points = torch.cat([points, torch.ones(N, W*H, 1).to(device)], dim=-1)
new_points = inv_obj_pose.unsqueeze(0).expand(N, -1, -1).unsqueeze(1)@ homogeneous_points.unsqueeze(-1)
new_points = new_points.squeeze(-1)[...,:3].view(N, W, H, _)
return new_poses, new_points
def txt_interpolation(input_list,n,mode = 'smooth'):
x = np.linspace(0, 1, len(input_list))
if mode == 'smooth':
f = UnivariateSpline(x, input_list, k=3)
elif mode == 'linear':
f = interp1d(x, input_list)
else:
raise KeyError(f"Invalid txt interpolation mode: {mode}")
xnew = np.linspace(0, 1, n)
ynew = f(xnew)
return ynew
def visualizer(camera_poses, save_path="out.png"):
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
colors = ["blue" for _ in camera_poses]
for pose, color in zip(camera_poses, colors):
camera_positions = pose[:3, 3]
ax.scatter(
camera_positions[0],
camera_positions[1],
camera_positions[2],
c=color,
marker="o",
)
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
ax.set_title("Camera trajectory")
# ax.view_init(90+30, -90)
plt.savefig(save_path)
plt.close()
def visualizer_frame(camera_poses, highlight_index):
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
# 获取camera_positions[2]的最大值和最小值
z_values = [pose[:3, 3][2] for pose in camera_poses]
z_min, z_max = min(z_values), max(z_values)
# 创建一个颜色映射对象
cmap = mcolors.LinearSegmentedColormap.from_list("mycmap", ["#00008B", "#ADD8E6"])
# cmap = plt.get_cmap("coolwarm")
norm = mcolors.Normalize(vmin=z_min, vmax=z_max)
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
for i, pose in enumerate(camera_poses):
camera_positions = pose[:3, 3]
color = "blue" if i == highlight_index else "blue"
size = 100 if i == highlight_index else 25
color = sm.to_rgba(camera_positions[2]) # 根据camera_positions[2]的值映射颜色
ax.scatter(
camera_positions[0],
camera_positions[1],
camera_positions[2],
c=color,
marker="o",
s=size,
)
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
# ax.set_title("Camera trajectory")
ax.view_init(90+30, -90)
plt.ylim(-0.1,0.2)
fig.canvas.draw()
width, height = fig.canvas.get_width_height()
img = np.frombuffer(fig.canvas.tostring_rgb(), dtype='uint8').reshape(height, width, 3)
# new_width = int(width * 0.6)
# start_x = (width - new_width) // 2 + new_width // 5
# end_x = start_x + new_width
# img = img[:, start_x:end_x, :]
plt.close()
return img
|