File size: 10,790 Bytes
db8912f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import spaces
import gradio as gr
import os
import sys
import time
from omegaconf import OmegaConf
import torch
from pytorch_lightning import seed_everything
from huggingface_hub import hf_hub_download
from einops import repeat
import torchvision.transforms as transforms
from utils.utils import instantiate_from_config
sys.path.insert(0, "scripts/evaluation")
from funcs import (
    batch_ddim_sampling,
    load_model_checkpoint,
    get_latent_z,
    save_videos
)

def download_model():
    REPO_ID = 'Doubiiu/DynamiCrafter_512_Interp'
    filename_list = ['model.ckpt']
    if not os.path.exists('./checkpoints/dynamicrafter_512_interp_v1/'):
        os.makedirs('./checkpoints/dynamicrafter_512_interp_v1/')
    for filename in filename_list:
        local_file = os.path.join('./checkpoints/dynamicrafter_512_interp_v1/', filename)
        if not os.path.exists(local_file):
            hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/dynamicrafter_512_interp_v1/', force_download=True)



download_model()
ckpt_path='checkpoints/dynamicrafter_512_interp_v1/model.ckpt'
config_file='configs/inference_512_v1.0.yaml'
config = OmegaConf.load(config_file)
model_config = config.pop("model", OmegaConf.create())
model_config['params']['unet_config']['params']['use_checkpoint']=False   
model = instantiate_from_config(model_config)
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
model = load_model_checkpoint(model, ckpt_path)
model.eval()
model = model.cuda()



@spaces.GPU(duration=300)
def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, image2=None):
    resolution = (320, 512)
    save_fps = 8
    seed_everything(seed)
    transform = transforms.Compose([
        transforms.Resize(min(resolution)),
        transforms.CenterCrop(resolution),
        ])
    torch.cuda.empty_cache()
    print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
    start = time.time()
    if steps > 60:
        steps = 60 

    batch_size=1
    channels = model.model.diffusion_model.out_channels
    frames = model.temporal_length
    h, w = resolution[0] // 8, resolution[1] // 8
    noise_shape = [batch_size, channels, frames, h, w]

    # text cond
    with torch.no_grad(), torch.cuda.amp.autocast():
        text_emb = model.get_learned_conditioning([prompt])
    
        # img cond
        img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
        img_tensor = (img_tensor / 255. - 0.5) * 2
    
        image_tensor_resized = transform(img_tensor) #3,256,256
        videos = image_tensor_resized.unsqueeze(0) # bchw
        
        z = get_latent_z(model, videos.unsqueeze(2)) #bc,1,hw
    
        if image2 is not None:
            img_tensor2 = torch.from_numpy(image2).permute(2, 0, 1).float().to(model.device)
            img_tensor2 = (img_tensor2 / 255. - 0.5) * 2

            image_tensor_resized2 = transform(img_tensor2) #3,h,w
            videos2 = image_tensor_resized2.unsqueeze(0) # bchw

            z2 = get_latent_z(model, videos2.unsqueeze(2)) #bc,1,hw



        img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)

        img_tensor_repeat = torch.zeros_like(img_tensor_repeat)

        ## old
        img_tensor_repeat[:,:,:1,:,:] = z
        if image2 is not None:
            img_tensor_repeat[:,:,-1:,:,:] = z2
        else:
            img_tensor_repeat[:,:,-1:,:,:] = z
    
        cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc
        img_emb = model.image_proj_model(cond_images)
    
        imtext_cond = torch.cat([text_emb, img_emb], dim=1)
    
        fs = torch.tensor([fs], dtype=torch.long, device=model.device)
        cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
        
        ## inference
        batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
        ## b,samples,c,t,h,w
        ## remove the last frame for looping video
        if image2 is None:
            batch_samples = batch_samples[:,:,:,:-1,...]
        video_path = './output.mp4'
        save_videos(batch_samples, './', filenames=['output'], fps=save_fps)
    return video_path


i2v_examples_interp_512 = [
    ['prompts/512_interp/smile_01.png', 'a smiling girl', 50, 7.5, 1.0, 5, 12306, 'prompts/512_interp/smile_02.png'],
    ['prompts/512_interp/stone01_01.png', 'rotating view', 50, 7.5, 1.0, 5, 123, 'prompts/512_interp/stone01_02.png'],
    ['prompts/512_interp/walk_01.png', 'man walking', 50, 7.5, 1.0, 5, 345, 'prompts/512_interp/walk_02.png'],
]
i2v_examples_loop_512 = [
    ['prompts/512_loop/24.png', 'a beach with waves and clouds at sunset', 50, 7.5, 1.0, 5, 234],
    ['prompts/512_loop/36.png', 'clothes swaying in the wind', 50, 7.5, 1.0, 5, 123],
    ['prompts/512_loop/40.png', 'flowers swaying in the wind', 50, 7.5, 1.0, 5, 234],
]




css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height: 576px}"""

with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
    gr.Markdown("<div align='center'> <h1> DynamiCrafter: Animating Open-domain Images with Video Diffusion Priors </span> </h1> \
                    <h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
                    <a href='https://doubiiu.github.io/'>Jinbo Xing</a>, \
                    <a href='https://menghanxia.github.io/'>Menghan Xia</a>, <a href='https://yzhang2016.github.io/'>Yong Zhang</a>, \
                    <a href=''>Haoxin Chen</a>, <a href=''> Wangbo Yu</a>,\
                    <a href='https://github.com/hyliu'>Hanyuan Liu</a>, <a href='https://xinntao.github.io/'>Xintao Wang</a>,\
                    <a href='https://www.cse.cuhk.edu.hk/~ttwong/myself.html'>Tien-Tsin Wong</a>,\
                    <a href='https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=zh-CN'>Ying Shan</a>\
                </h2> \
                <a style='font-size:18px;color: #000000'>If DynamiCrafter is useful, please help star the </a>\
                <a style='font-size:18px;color: #000000' href='https://github.com/Doubiiu/DynamiCrafter'>[Github Repo]</a>\
                <a style='font-size:18px;color: #000000'>, which is important to Open-Source projects. Thanks!</a>\
                    <a style='font-size:18px;color: #000000' href='https://arxiv.org/abs/2310.12190'> [ArXiv] </a>\
                    <a style='font-size:18px;color: #000000' href='https://doubiiu.github.io/projects/DynamiCrafter/'> [Project Page] </a> </div>")
    
    #######generative frame interpolation and looping video generation######
    with gr.Tab(label='Generative Frame Interpolation_320x512'):
        with gr.Column():
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        i2v_input_image = gr.Image(label="Input Image1",elem_id="input_img")
                    with gr.Row():
                        i2v_input_text = gr.Text(label='Prompts')
                    with gr.Row():
                        i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=50000, step=1, value=123)
                        i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
                        i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5, elem_id="i2v_cfg_scale")
                    with gr.Row():
                        i2v_steps = gr.Slider(minimum=1, maximum=50, step=1, elem_id="i2v_steps", label="Sampling steps", value=30)
                        i2v_motion = gr.Slider(minimum=5, maximum=30, step=1, elem_id="i2v_motion", label="FPS", value=10)
                    i2v_end_btn = gr.Button("Generate")
                with gr.Column():
                    with gr.Row():
                        i2v_input_image2 = gr.Image(label="Input Image2",elem_id="input_img2")
                    with gr.Row():
                        i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)

            gr.Examples(examples=i2v_examples_interp_512,
                        inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, i2v_input_image2],
                        outputs=[i2v_output_video],
                        fn = infer,
                        cache_examples=True,
            )
        i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, i2v_input_image2],
                        outputs=[i2v_output_video],
                        fn = infer
        )
    #######generative frame interpolation and looping video generation######
    with gr.Tab(label='Looping Video Generation_320x512'):
        with gr.Column():
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        i2v_input_image = gr.Image(label="Input Image",elem_id="input_img")
                    with gr.Row():
                        i2v_input_text = gr.Text(label='Prompts')
                    with gr.Row():
                        i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=50000, step=1, value=123)
                        i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
                        i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5, elem_id="i2v_cfg_scale")
                    with gr.Row():
                        i2v_steps = gr.Slider(minimum=1, maximum=50, step=1, elem_id="i2v_steps", label="Sampling steps", value=30)
                        i2v_motion = gr.Slider(minimum=5, maximum=30, step=1, elem_id="i2v_motion", label="FPS", value=5)
                    i2v_end_btn = gr.Button("Generate")
                # with gr.Tab(label='Result'):
                with gr.Row():
                    i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)

            gr.Examples(examples=i2v_examples_loop_512,
                        inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed],
                        outputs=[i2v_output_video],
                        fn = infer,
                        cache_examples=True,
            )
        i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed],
                        outputs=[i2v_output_video],
                        fn = infer
        )

dynamicrafter_iface.queue(max_size=12).launch(show_api=True)