Spaces:
Sleeping
Sleeping
File size: 1,235 Bytes
7898772 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import gradio as gr
from transformers import AutoTokenizer
import onnxruntime as ort
import numpy as np
# Load tokenizer and ONNX quantized model
tokenizer = AutoTokenizer.from_pretrained("onnx/")
session = ort.InferenceSession("onnx/model_quantized.onnx")
# Softmax function
def softmax(x):
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum()
# Prediction function
def classify_sentiment(text):
# Tokenize the input text
inputs = tokenizer(text, return_tensors="np")
#print(inputs)
# Run inference
outputs = session.run(None, {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"]
})
# Process logits
logits = outputs[0][0]
probs = softmax(logits)
pred_class = int(np.argmax(probs))
label_map = {0: "Negative", 1: "Positive"}
print(label_map[pred_class])
return label_map[pred_class]
# Gradio Interface
interface = gr.Interface(
fn=classify_sentiment,
inputs=gr.Textbox(lines=2, placeholder="Enter text here..."),
outputs='label',
title="Sentiment Classifier",
description="Enter a sentence to classify its sentiment",
)
# Launch the app
if __name__ == "__main__":
interface.launch(share=True)
|