Spaces:
Running
Running
File size: 10,242 Bytes
93b0af7 4e90819 93b0af7 4e90819 93b0af7 4e90819 93b0af7 4e90819 93b0af7 4e90819 93b0af7 4e90819 93b0af7 4e90819 93b0af7 4e90819 93b0af7 4e90819 93b0af7 4e90819 93b0af7 4e90819 93b0af7 4e90819 93b0af7 4e90819 93b0af7 4e90819 93b0af7 4e90819 93b0af7 4e90819 93b0af7 4e90819 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
from flask import Flask, render_template, request, jsonify, send_from_directory
from flask_cors import CORS
from flask_limiter import Limiter
from flask_limiter.util import get_remote_address
from deepface import DeepFace
from werkzeug.utils import secure_filename
import os
import tempfile
import shutil
import uuid
import logging
import time
from datetime import datetime
from functools import wraps
import numpy as np
import cv2
from PIL import Image
import io
import threading
import queue
import hashlib
# Configuration du logging
logging.basicConfig(
filename='app.log',
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
class FaceAnalysisApp:
def __init__(self):
self.app = Flask(__name__, static_folder='static')
self.setup_app()
def setup_app(self):
# Configuration de base
self.app.config['UPLOAD_FOLDER'] = 'static/uploads'
self.app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024
self.app.config['ALLOWED_EXTENSIONS'] = {'png', 'jpg', 'jpeg', 'gif'}
self.app.config['SECRET_KEY'] = os.urandom(24)
# Initialisation des composants
CORS(self.app)
self.limiter = Limiter(
self.app,
key_func=get_remote_address,
default_limits=["200 per day", "50 per hour"]
)
# File d'attente pour le traitement asynchrone
self.task_queue = queue.Queue()
self.start_worker_thread()
# Cache pour les résultats
self.results_cache = {}
def start_worker_thread(self):
def worker():
while True:
task = self.task_queue.get()
if task is None:
break
try:
task()
except Exception as e:
logging.error(f"Error in worker thread: {str(e)}")
self.task_queue.task_done()
self.worker_thread = threading.Thread(target=worker, daemon=True)
self.worker_thread.start()
def timing_decorator(self, f):
@wraps(f)
def wrap(*args, **kwargs):
start = time.time()
result = f(*args, **kwargs)
end = time.time()
logging.info(f'{f.__name__} took {end-start:.2f} seconds to execute')
return result
return wrap
def validate_image(self, image_stream):
"""Valide et optimise l'image"""
try:
img = Image.open(image_stream)
# Vérification des dimensions
if img.size[0] > 2000 or img.size[1] > 2000:
img.thumbnail((2000, 2000), Image.LANCZOS)
# Conversion en RGB si nécessaire
if img.mode not in ('RGB', 'L'):
img = img.convert('RGB')
# Optimisation
output = io.BytesIO()
img.save(output, format='JPEG', quality=85, optimize=True)
output.seek(0)
return output
except Exception as e:
logging.error(f"Image validation error: {str(e)}")
raise ValueError("Invalid image format")
def process_face_detection(self, image_path):
"""Détection de visage avec mise en cache"""
image_hash = hashlib.md5(open(image_path, 'rb').read()).hexdigest()
if image_hash in self.results_cache:
return self.results_cache[image_hash]
try:
result = DeepFace.analyze(
img_path=image_path,
actions=['age', 'gender', 'race', 'emotion'],
enforce_detection=True
)
self.results_cache[image_hash] = result
return result
except Exception as e:
logging.error(f"Face detection error: {str(e)}")
raise
@timing_decorator
def verify_faces(self, image1_path, image2_path):
"""Comparaison des visages avec vérification approfondie"""
try:
# Vérification initiale de la présence de visages
face1 = cv2.imread(image1_path)
face2 = cv2.imread(image2_path)
if face1 is None or face2 is None:
raise ValueError("Unable to read one or both images")
result = DeepFace.verify(
img1_path=image1_path,
img2_path=image2_path,
enforce_detection=True,
model_name="VGG-Face"
)
# Enrichissement des résultats
result['timestamp'] = datetime.now().isoformat()
result['confidence_score'] = 1 - result.get('distance', 0)
result['processing_time'] = time.time()
return result
except Exception as e:
logging.error(f"Face verification error: {str(e)}")
raise
def setup_routes(self):
@self.app.route('/')
def index():
return render_template('index.html')
@self.app.route('/verify', methods=['POST'])
@self.limiter.limit("10 per minute")
def verify_faces_endpoint():
try:
if 'image1' not in request.files or 'image2' not in request.files:
return jsonify({'error': 'Two images are required'}), 400
image1 = request.files['image1']
image2 = request.files['image2']
# Validation des images
try:
image1_stream = self.validate_image(image1)
image2_stream = self.validate_image(image2)
except ValueError as e:
return jsonify({'error': str(e)}), 400
# Création des fichiers temporaires
with tempfile.TemporaryDirectory() as temp_dir:
image1_path = os.path.join(temp_dir, secure_filename(image1.filename))
image2_path = os.path.join(temp_dir, secure_filename(image2.filename))
# Sauvegarde des images optimisées
with open(image1_path, 'wb') as f:
f.write(image1_stream.getvalue())
with open(image2_path, 'wb') as f:
f.write(image2_stream.getvalue())
# Analyse des visages
result = self.verify_faces(image1_path, image2_path)
# Sauvegarde permanente si nécessaire
if result['verified']:
permanent_dir = os.path.join(self.app.static_folder, 'verified_faces')
os.makedirs(permanent_dir, exist_ok=True)
# Génération de noms uniques
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
image1_name = f"face1_{timestamp}_{uuid.uuid4().hex[:8]}.jpg"
image2_name = f"face2_{timestamp}_{uuid.uuid4().hex[:8]}.jpg"
shutil.copy2(image1_path, os.path.join(permanent_dir, image1_name))
shutil.copy2(image2_path, os.path.join(permanent_dir, image2_name))
result['image1_url'] = f'/static/verified_faces/{image1_name}'
result['image2_url'] = f'/static/verified_faces/{image2_name}'
return jsonify(result)
except Exception as e:
logging.error(f"Verification endpoint error: {str(e)}")
return jsonify({'error': 'An internal error occurred'}), 500
@self.app.route('/analyze', methods=['POST'])
@self.limiter.limit("20 per minute")
def analyze_face_endpoint():
try:
if 'image' not in request.files:
return jsonify({'error': 'No image provided'}), 400
image = request.files['image']
# Validation de l'image
try:
image_stream = self.validate_image(image)
except ValueError as e:
return jsonify({'error': str(e)}), 400
# Traitement asynchrone
result_queue = queue.Queue()
def process_task():
try:
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as temp_file:
temp_file.write(image_stream.getvalue())
result = self.process_face_detection(temp_file.name)
result_queue.put(('success', result))
except Exception as e:
result_queue.put(('error', str(e)))
finally:
try:
os.unlink(temp_file.name)
except:
pass
self.task_queue.put(process_task)
# Attente du résultat avec timeout
try:
status, result = result_queue.get(timeout=30)
if status == 'error':
return jsonify({'error': result}), 500
return jsonify(result)
except queue.Empty:
return jsonify({'error': 'Processing timeout'}), 408
except Exception as e:
logging.error(f"Analysis endpoint error: {str(e)}")
return jsonify({'error': 'An internal error occurred'}), 500
@self.app.errorhandler(413)
def request_entity_too_large(error):
return jsonify({'error': 'File too large'}), 413
@self.app.errorhandler(429)
def ratelimit_handler(e):
return jsonify({'error': 'Rate limit exceeded'}), 429
def run(self, host='0.0.0.0', port=5000, debug=False):
self.setup_routes()
self.app.run(host=host, port=port, debug=debug)
if __name__ == '__main__':
app = FaceAnalysisApp()
app.run(debug=True) |