Spaces:
Runtime error
Runtime error
File size: 6,834 Bytes
920001b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import re
import unicodedata
from pathlib import Path
import bm25s
import pandas as pd
from llama_index.core import Document
from llama_index.core.schema import MetadataMode
from llama_index.core.vector_stores.utils import node_to_metadata_dict
from llama_index.retrievers.bm25 import BM25Retriever
PERSIST_PATH = Path("Save_Index_Local")
LP_INFO_FILE = "legal_position_with_categories_documents_all.xlsx"
INDEX_NAME = "bm25_retriever"
USE_META = False
# INDEX_NAME = "bm25_retriever_meta"
# USE_META = True
def clean_string(text: pd.Series):
text = text.fillna("")
text = text.str.replace(r"«|»", '"', regex=True)
text = text.str.replace(r"\xa0", " ")
text = text.str.replace(r"§", "№")
# Handle unicode fractions
text = text.apply(lambda t: unicodedata.normalize("NFKC", t)) # type: ignore
text = text.str.replace("⁄", "/")
return text
def find_matching_pattern(categories):
"""
Search for matching patterns in the categories list and return the first match found.
Args:
categories: List of strings or string to search in
Returns:
str: Matching pattern or empty string if no match found
"""
patterns = [
"Велика Палата",
"Касаційний кримінальний суд",
"Касаційний адміністративний суд",
"Касаційний господарський суд",
"Касаційний цивільний суд",
]
# Handle both string and list inputs
if isinstance(categories, str):
categories = [categories]
elif isinstance(categories, list):
# If list contains lists, flatten it
categories = [item for sublist in categories for item in sublist]
# Search for patterns
for category in categories:
for pattern in patterns:
if pattern in category:
return pattern
return ""
ukrainian_stopwords_1 = [
"я",
"ти",
"він",
"вона",
"воно",
"ми",
"ви",
"вони",
"це",
"той",
"така",
"таке",
"такі",
"цей",
"моя",
"твоя",
"його",
"її",
"наш",
"ваш",
"їх",
"де",
"чи",
"а",
"але",
"і",
"або",
"так",
"ні",
"чи",
"в",
"на",
"з",
"до",
"під",
"через",
"після",
"між",
"серед",
"без",
"для",
"про",
"о",
"за",
"від",
"до",
"як",
"якби",
"коли",
"де",
"тому",
"тому що",
"що",
"чому",
"хто",
"що",
"якось",
"коли-небудь",
"де-небудь",
"чимало",
]
ukrainian_stopwords_2 = [
# Articles
"і",
"й",
"у",
"в",
"та",
"і",
# Pronouns
"я",
"ти",
"він",
"вона",
"воно",
"ми",
"ви",
"вони",
"мене",
"тебе",
"його",
"її",
"нас",
"вас",
"їх",
"мій",
"твій",
"наш",
"ваш",
"свій",
# Prepositions
"з",
"до",
"від",
"біля",
"над",
"під",
"через",
"для",
"без",
"між",
"серед",
"крізь",
"понад",
"поза",
"крім",
# Conjunctions
"та",
"і",
"але",
"або",
"однак",
"проте",
"тому",
"тому що",
"оскільки",
"якщо",
"коли",
"хоча",
# Auxiliary words
"так",
"ні",
"не",
"бути",
"мати",
"можна",
"треба",
# Common filler words
"цей",
"той",
"це",
"те",
"такий",
"який",
"котрий",
# Modal words
"мабуть",
"напевно",
"звичайно",
"можливо",
# Particles
"ось",
"ніби",
"майже",
"майже що",
"саме",
"лише",
"тільки",
]
ukrainian_stopwords = list(set(ukrainian_stopwords_1 + ukrainian_stopwords_2))
final_df = pd.read_excel(LP_INFO_FILE)
if USE_META:
category_columns = [
col for col in final_df.columns if re.match(r"category_\d+$", col)
]
text_columns = ["title", "text_lp", "category_all"] + category_columns
final_df[text_columns] = final_df[text_columns].apply(clean_string)
final_df["category_search"] = final_df[category_columns].apply(
lambda row: ", ".join([str(val) for val in row if pd.notna(val)]), axis=1
)
final_df["category_filter"] = final_df["category_all"].apply(find_matching_pattern)
legal_position_title_category = [
Document(
text=row["text_lp"], # type: ignore
metadata={ # type: ignore
"lp_id": row["id"],
"title": row["title"],
"doc_id": row["document_ids"],
"category_filter": find_matching_pattern(row["category_all"]),
"category_search": row["category_search"],
},
excluded_embed_metadata_keys=["doc_id", "category_filter"],
excluded_llm_metadata_keys=["doc_id", "category_filter"],
)
for _, row in final_df.iterrows()
]
else:
final_df[["title", "text_lp"]] = final_df[["title", "text_lp"]].apply(clean_string)
legal_position_title_category = [
Document(
text=row["text_lp"], # type: ignore
metadata={ # type: ignore
"title": row["title"],
},
excluded_embed_metadata_keys=["title"],
excluded_llm_metadata_keys=["title"],
)
for _, row in final_df.iterrows()
]
# Copied from BM25Retriever __init__ method, but note that output looks awful and might work worse (this needs checking)
corpus = [node_to_metadata_dict(node) for node in legal_position_title_category]
corpus_tokens = bm25s.tokenize(
[
node.get_content(metadata_mode=MetadataMode.EMBED)
for node in legal_position_title_category
],
stopwords=ukrainian_stopwords,
)
existing_bm25 = bm25s.BM25(
k1=1.88,
b=1.25,
delta=0.5,
method="robertson",
# No corpus is saved without this line:
corpus=corpus, # prevents TypeError: 'NoneType' object is not subscriptable
)
existing_bm25.index(corpus=corpus_tokens)
bm25_retriever = BM25Retriever(
existing_bm25=existing_bm25,
similarity_top_k=20,
)
bm25_retriever.persist(str(PERSIST_PATH / INDEX_NAME))
# Returns an error on invalid corpus
loaded_retriever = BM25Retriever.from_persist_dir(str(PERSIST_PATH / INDEX_NAME))
|