File size: 22,800 Bytes
e0be88b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import math
import unittest

from transformers import LlamaConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device


if is_torch_available():
    import torch

    from transformers import ROPE_INIT_FUNCTIONS
    from transformers.modeling_rope_utils import rope_config_validation


@require_torch
class RopeTest(unittest.TestCase):
    def test_rope_validation(self):
        config = LlamaConfig()
        all_rope_types = ROPE_INIT_FUNCTIONS.keys()

        # The base config is always valid (default RoPE)
        rope_config_validation(config)

        # If we explicitly set the other RoPE types, then validation should fail
        for rope_type in all_rope_types:
            if rope_type != "default":
                config.rope_scaling = {"rope_type": rope_type}
                with self.assertRaises(KeyError):
                    rope_config_validation(config)

        # Parameters are exclusive to their own RoPE type, and should raise an exception if incorrectly passed
        valid_param_mapping = {
            "factor": ["linear", "dynamic", "yarn", "longrope"],
            "attention_factor": ["yarn", "longrope"],
            "beta_fast": ["yarn"],
            "beta_slow": ["yarn"],
            "short_factor": ["longrope"],
            "long_factor": ["longrope"],
        }
        for rope_type in all_rope_types:
            if rope_type == "default":
                continue  # checked above
            for param, valid_rope_types in valid_param_mapping.items():
                # Set `param` with a dummy value -- we want to test the dict key
                config.rope_scaling = {"rope_type": rope_type, param: True}
                if rope_type in valid_rope_types:
                    continue
                else:
                    with self.assertRaises(KeyError):
                        rope_config_validation(config)

        # Any other parameters passed to RoPE will raise a warning that a particular key is not used
        # But sometimes we can have model-specific RoPE kwargs and bypass warning with `ignore_keys`
        model_specific_kwarg = "mrope_sections"  # e,g in Qwen2-VL

        for rope_type in all_rope_types:
            if rope_type == "default":
                config.rope_scaling = {"rope_type": rope_type, model_specific_kwarg: True}
                rope_config_validation(config, ignore_keys={model_specific_kwarg})
                with self.assertLogs("transformers.modeling_rope_utils", level="WARNING") as logs:
                    rope_config_validation(config)
                    self.assertEqual(len(logs.output), 1)
                    self.assertIn(model_specific_kwarg, logs.output[0])

    def test_default_rope_function_bc(self):
        config = LlamaConfig()
        device = torch_device

        rope_kwargs = {
            "rope_type": "default",
            "dim": config.hidden_size // config.num_attention_heads,
            "max_position_embeddings": config.max_position_embeddings,
            "base": config.rope_theta,
        }

        rope_fn = ROPE_INIT_FUNCTIONS["default"]
        config_freqs = rope_fn(config=config, device=device)[0]
        kwargs_freqs = rope_fn(**rope_kwargs, device=device)[0]
        torch.testing.assert_close(config_freqs, kwargs_freqs)

    def test_linear_rope_function_bc(self):
        config = LlamaConfig()
        config.rope_scaling = {"rope_type": "linear", "factor": 10.0}
        device = torch_device

        rope_kwargs = {
            "rope_type": "linear",
            "dim": config.hidden_size // config.num_attention_heads,
            "max_position_embeddings": config.max_position_embeddings,
            "base": config.rope_theta,
            "factor": 10.0,
        }

        rope_fn = ROPE_INIT_FUNCTIONS["linear"]
        config_freqs = rope_fn(config=config, device=device)[0]
        kwargs_freqs = rope_fn(**rope_kwargs, device=device)[0]
        torch.testing.assert_close(config_freqs, kwargs_freqs)

    def test_dynamic_rope_function_bc(self):
        config = LlamaConfig()
        config.rope_scaling = {"rope_type": "dynamic", "factor": 10.0}
        device = torch_device

        rope_kwargs = {
            "rope_type": "dynamic",
            "dim": config.hidden_size // config.num_attention_heads,
            "max_position_embeddings": config.max_position_embeddings,
            "base": config.rope_theta,
            "factor": 10.0,
        }

        rope_fn = ROPE_INIT_FUNCTIONS["dynamic"]
        config_freqs = rope_fn(config=config, device=device)[0]
        kwargs_freqs = rope_fn(**rope_kwargs, device=device)[0]
        torch.testing.assert_close(config_freqs, kwargs_freqs)

    def test_default_rope_numerically(self):
        # Note: some RoPE scaling methods start off by calling the default RoPE frequencies. If this test fails, then
        # multiple RoPE strategies will fail.
        # fmt: off
        EXPECTED_INV_FREQ = torch.tensor(
            [
                1.0000e+00, 8.6596e-01, 7.4989e-01, 6.4938e-01, 5.6234e-01, 4.8697e-01,
                4.2170e-01, 3.6517e-01, 3.1623e-01, 2.7384e-01, 2.3714e-01, 2.0535e-01,
                1.7783e-01, 1.5399e-01, 1.3335e-01, 1.1548e-01, 1.0000e-01, 8.6596e-02,
                7.4989e-02, 6.4938e-02, 5.6234e-02, 4.8697e-02, 4.2170e-02, 3.6517e-02,
                3.1623e-02, 2.7384e-02, 2.3714e-02, 2.0535e-02, 1.7783e-02, 1.5399e-02,
                1.3335e-02, 1.1548e-02, 1.0000e-02, 8.6596e-03, 7.4989e-03, 6.4938e-03,
                5.6234e-03, 4.8697e-03, 4.2170e-03, 3.6517e-03, 3.1623e-03, 2.7384e-03,
                2.3714e-03, 2.0535e-03, 1.7783e-03, 1.5399e-03, 1.3335e-03, 1.1548e-03,
                1.0000e-03, 8.6596e-04, 7.4989e-04, 6.4938e-04, 5.6234e-04, 4.8697e-04,
                4.2170e-04, 3.6517e-04, 3.1623e-04, 2.7384e-04, 2.3714e-04, 2.0535e-04,
                1.7783e-04, 1.5399e-04, 1.3335e-04, 1.1548e-04
            ], device=torch_device
        )
        # fmt: on

        # input sanity checks: if these change, the output will also change
        config = LlamaConfig()
        self.assertEqual(config.rope_scaling, None)
        self.assertEqual(config.hidden_size, 4096)
        self.assertEqual(config.num_attention_heads, 32)
        self.assertEqual(config.rope_theta, 10000.0)
        self.assertFalse(hasattr(config, "partial_rotary_factor"))

        rope_fn = ROPE_INIT_FUNCTIONS["default"]
        inv_freq, attention_scale = rope_fn(config=config, device=torch_device)

        self.assertEqual(attention_scale, 1.0)  # attention scale is always 1 for default RoPE
        torch.testing.assert_close(inv_freq, EXPECTED_INV_FREQ)

    def test_linear_rope_numerically(self):
        # This is a linear scaling strategy, the **frequencies** are scaled linearly with respect to the default
        # frequencies (= the inverse frequencies are scaled **inversely**)
        config = LlamaConfig()
        default_rope_fn = ROPE_INIT_FUNCTIONS["default"]
        default_inv_freq, _ = default_rope_fn(config=config, device=torch_device)

        rope_fn = ROPE_INIT_FUNCTIONS["linear"]
        for factor in (2.0, 10.0, 20.0):
            config.rope_scaling = {"rope_type": "linear", "factor": factor}
            inv_freq, attention_scale = rope_fn(config=config, device=torch_device)
            self.assertEqual(attention_scale, 1.0)  # attention scale is always 1 for linear RoPE
            torch.testing.assert_close(inv_freq, default_inv_freq / factor)

    def test_dynamic_rope_numerically(self):
        # fmt: off
        EXPECTED_INV_FREQ = torch.tensor(
            [
                1.0000e+00, 8.0931e-01, 6.5498e-01, 5.3008e-01, 4.2900e-01, 3.4720e-01,
                2.8099e-01, 2.2741e-01, 1.8404e-01, 1.4895e-01, 1.2055e-01, 9.7558e-02,
                7.8955e-02, 6.3899e-02, 5.1714e-02, 4.1853e-02, 3.3872e-02, 2.7413e-02,
                2.2185e-02, 1.7955e-02, 1.4531e-02, 1.1760e-02, 9.5176e-03, 7.7027e-03,
                6.2339e-03, 5.0451e-03, 4.0831e-03, 3.3045e-03, 2.6744e-03, 2.1644e-03,
                1.7517e-03, 1.4176e-03, 1.1473e-03, 9.2852e-04, 7.5146e-04, 6.0817e-04,
                4.9220e-04, 3.9834e-04, 3.2238e-04, 2.6091e-04, 2.1115e-04, 1.7089e-04,
                1.3830e-04, 1.1193e-04, 9.0585e-05, 7.3312e-05, 5.9332e-05, 4.8018e-05,
                3.8861e-05, 3.1451e-05, 2.5453e-05, 2.0600e-05, 1.6672e-05, 1.3492e-05,
                1.0920e-05, 8.8374e-06, 7.1522e-06, 5.7883e-06, 4.6845e-06, 3.7912e-06,
                3.0683e-06, 2.4832e-06, 2.0097e-06, 1.6265e-06
            ], device=torch_device
        )
        # fmt: on

        # input sanity checks: if these change, the output will also change
        config = LlamaConfig()
        self.assertEqual(config.rope_scaling, None)
        self.assertEqual(config.hidden_size, 4096)
        self.assertEqual(config.num_attention_heads, 32)
        self.assertEqual(config.rope_theta, 10000.0)
        self.assertFalse(hasattr(config, "partial_rotary_factor"))

        rope_fn = ROPE_INIT_FUNCTIONS["default"]
        default_inv_freq, _ = rope_fn(config=config, device=torch_device)

        # Check 1: this is a dynamic scaling strategy, it will not scale unless we provide `seq_len` larger than the
        # model's original training sequence length
        rope_fn = ROPE_INIT_FUNCTIONS["dynamic"]
        for factor in (2.0, 10.0, 20.0):
            config.rope_scaling = {"rope_type": "dynamic", "factor": factor}
            inv_freq, attention_scale = rope_fn(config=config, device=torch_device)
            self.assertEqual(attention_scale, 1.0)  # attention scale is always 1 for dynamic RoPE
            torch.testing.assert_close(inv_freq, default_inv_freq)

            inv_freq, _ = rope_fn(config=config, device=torch_device, seq_len=1)
            torch.testing.assert_close(inv_freq, default_inv_freq)

        # Check 2: if we provide `seq_len` larger than the model's original training sequence length, the frequencies
        # will scale up (i.e., the inverse frequencies will scale down).
        factor = 10.0
        config.rope_scaling = {"rope_type": "dynamic", "factor": factor}
        inv_freq, _ = rope_fn(config=config, device=torch_device, seq_len=16384)
        with self.assertRaises(AssertionError):  # It is NOT a linear factor
            torch.testing.assert_close(inv_freq, default_inv_freq / factor)
        torch.testing.assert_close(inv_freq, EXPECTED_INV_FREQ)

    def test_yarn_rope_numerically(self):
        # fmt: off
        EXPECTED_INV_FREQ = torch.tensor(
            [
                1.0000e+00, 8.6596e-01, 7.4989e-01, 6.4938e-01, 5.6234e-01, 4.8697e-01,
                4.2170e-01, 3.6517e-01, 3.1623e-01, 2.7384e-01, 2.3714e-01, 2.0535e-01,
                1.7783e-01, 1.5399e-01, 1.3335e-01, 1.1548e-01, 1.0000e-01, 8.3479e-02,
                6.9590e-02, 5.7925e-02, 4.8136e-02, 3.9931e-02, 3.3061e-02, 2.7315e-02,
                2.2515e-02, 1.8512e-02, 1.5177e-02, 1.2403e-02, 1.0101e-02, 8.1924e-03,
                6.6143e-03, 5.3120e-03, 4.2400e-03, 3.3599e-03, 2.6396e-03, 2.0520e-03,
                1.5746e-03, 1.1882e-03, 8.7713e-04, 6.2810e-04, 4.3007e-04, 2.7384e-04,
                2.3714e-04, 2.0535e-04, 1.7783e-04, 1.5399e-04, 1.3335e-04, 1.1548e-04,
                1.0000e-04, 8.6596e-05, 7.4989e-05, 6.4938e-05, 5.6234e-05, 4.8697e-05,
                4.2170e-05, 3.6517e-05, 3.1623e-05, 2.7384e-05, 2.3714e-05, 2.0535e-05,
                1.7783e-05, 1.5399e-05, 1.3335e-05, 1.1548e-05
            ], device=torch_device
        )
        # fmt: on

        # input sanity checks: if these change, the output will also change
        config = LlamaConfig()
        self.assertEqual(config.rope_scaling, None)
        self.assertEqual(config.hidden_size, 4096)
        self.assertEqual(config.num_attention_heads, 32)
        self.assertEqual(config.rope_theta, 10000.0)
        self.assertFalse(hasattr(config, "partial_rotary_factor"))

        rope_fn = ROPE_INIT_FUNCTIONS["default"]
        default_inv_freq, _ = rope_fn(config=config, device=torch_device)

        # Check 1: according to the paper, if `attention_factor` is not specified, then it has a specific default --
        # `0.1 * math.log(factor) + 1.0`
        rope_fn = ROPE_INIT_FUNCTIONS["yarn"]
        for factor in (2.0, 10.0, 20.0):
            config.rope_scaling = {"rope_type": "yarn", "factor": factor}
            _, attention_scale = rope_fn(config=config, device=torch_device)
            self.assertEqual(attention_scale, 0.1 * math.log(factor) + 1.0)

            config.rope_scaling = {"rope_type": "yarn", "factor": factor, "attention_factor": 0.5}
            _, attention_scale = rope_fn(config=config, device=torch_device, seq_len=1)
            self.assertEqual(attention_scale, 0.5)

        # Check 2: based on `beta_fast` and `beta_slow`, the frequencies will be scaled between 1 and `factor`.
        # Increasing `beta_fast` will make RoPE more interpolative (apply scaling), and the other way around.
        # `beta_slow` behaves the opposite way. Remember: `beta_fast` > `beta_slow`
        # (note: adds a margin to the test for numerical stability)
        factor = 10.0
        margin = 1e-8
        config.rope_scaling = {"rope_type": "yarn", "factor": factor, "beta_fast": 32, "beta_slow": 1}
        inv_freq, _ = rope_fn(config=config, device=torch_device)
        is_bounded_by_factor = [
            ((default_inv_freq[idx] / factor) - margin) <= yarn_inv_freq_value <= (default_inv_freq[idx] + margin)
            for idx, yarn_inv_freq_value in enumerate(inv_freq)
        ]
        self.assertTrue(all(is_bounded_by_factor))

        # super high beta_fast = interpolation (i.e. scaling) in all but the first inverse frequency. The last ~20
        # values (empirically checked for `beta_fast` = 1000) should be very small to linear scaling
        config.rope_scaling = {"rope_type": "yarn", "factor": factor, "beta_fast": 1000, "beta_slow": 1}
        inv_freq, _ = rope_fn(config=config, device=torch_device)
        is_interpolating = [
            yarn_inv_freq_value < (default_inv_freq[idx] + margin) for idx, yarn_inv_freq_value in enumerate(inv_freq)
        ]
        self.assertFalse(is_interpolating[0])
        self.assertTrue(all(is_interpolating[1:]))
        torch.testing.assert_close(inv_freq[-20:], default_inv_freq[-20:] / factor)

        # Check 3: numerical snapshot to avoid regressions
        config.rope_scaling = {"rope_type": "yarn", "factor": factor, "beta_fast": 32, "beta_slow": 1}
        inv_freq, _ = rope_fn(config=config, device=torch_device)
        torch.testing.assert_close(inv_freq, EXPECTED_INV_FREQ)

    def test_longrope_rope_numerically(self):
        # input sanity checks: if these change, the output will also change
        config = LlamaConfig()
        self.assertEqual(config.rope_scaling, None)
        self.assertEqual(config.hidden_size, 4096)
        self.assertEqual(config.num_attention_heads, 32)
        self.assertEqual(config.rope_theta, 10000.0)
        self.assertFalse(hasattr(config, "partial_rotary_factor"))

        # longrope applies scaling on EACH inv frequency, `short_factor` or `long_factor`, depending on the seq_len
        dim = config.hidden_size // config.num_attention_heads
        short_factor = [2.0] * (dim // 2)  # scaling applied when seq_len <= max_position_embeddings
        long_factor = torch.ones(dim // 2).cumsum(0).tolist()  # scaling applied when seq_len > max_position_embeddings

        rope_fn = ROPE_INIT_FUNCTIONS["default"]
        default_inv_freq, _ = rope_fn(config=config, device=torch_device)

        # Check 1: according to the paper, if `attention_factor` is not specified, then it has a specific default --
        # `math.sqrt(1 + math.log(factor) / math.log(max_position_embeddings))`
        rope_fn = ROPE_INIT_FUNCTIONS["longrope"]
        max_position_embeddings = config.max_position_embeddings
        for factor in (2.0, 10.0, 20.0):
            config.rope_scaling = {
                "rope_type": "longrope",
                "factor": factor,
                "short_factor": short_factor,
                "long_factor": long_factor,
            }
            _, attention_scale = rope_fn(config=config, device=torch_device)
            self.assertEqual(attention_scale, math.sqrt(1 + math.log(factor) / math.log(max_position_embeddings)))

            config.rope_scaling = {
                "rope_type": "longrope",
                "factor": factor,
                "short_factor": short_factor,
                "long_factor": long_factor,
                "attention_factor": 0.5,
            }
            _, attention_scale = rope_fn(config=config, device=torch_device, seq_len=1)
            self.assertEqual(attention_scale, 0.5)

            config.rope_scaling = {
                "rope_type": "longrope",
                "factor": factor,
                "short_factor": short_factor,
                "long_factor": long_factor,
            }
            self.assertEqual(config.rope_scaling.get("attention_factor"), None)
            # Verify that "TypeError: '<' not supported between instances of 'NoneType' and 'int'" is not raised.
            rope_config_validation(config)

        # Check 2: seq_len == 0 -> short factor is applied to the default frequencies
        config.rope_scaling = {
            "rope_type": "longrope",
            "factor": 1.0,
            "short_factor": short_factor,
            "long_factor": long_factor,
        }
        inv_freq, _ = rope_fn(config=config, device=torch_device, seq_len=0)
        torch.testing.assert_close(inv_freq, default_inv_freq / torch.tensor(short_factor).to(torch_device))

        # Check 3: seq_len > max_position_embeddings -> long factor is applied to the default frequencies
        inv_freq, _ = rope_fn(config=config, device=torch_device, seq_len=config.max_position_embeddings + 1)
        torch.testing.assert_close(inv_freq, default_inv_freq / torch.tensor(long_factor).to(torch_device))

    def test_llama3_rope_numerically(self):
        # fmt: off
        EXPECTED_INV_FREQ = torch.tensor(
            [
                1.0000e+00, 8.6596e-01, 7.4989e-01, 6.4938e-01, 5.6234e-01, 4.8697e-01,
                4.2170e-01, 3.6517e-01, 3.1623e-01, 2.7384e-01, 2.3714e-01, 2.0535e-01,
                1.7783e-01, 1.5399e-01, 1.3335e-01, 1.1548e-01, 1.0000e-01, 8.6596e-02,
                7.4989e-02, 6.4938e-02, 5.6234e-02, 4.8697e-02, 4.2170e-02, 3.6517e-02,
                3.1623e-02, 2.7384e-02, 2.3714e-02, 2.0535e-02, 1.7783e-02, 1.5399e-02,
                1.3335e-02, 1.0730e-02, 7.7785e-03, 5.6009e-03, 3.9991e-03, 2.8248e-03,
                1.9675e-03, 1.3449e-03, 8.9549e-04, 5.7363e-04, 3.4539e-04, 2.7384e-04,
                2.3714e-04, 2.0535e-04, 1.7783e-04, 1.5399e-04, 1.3335e-04, 1.1548e-04,
                1.0000e-04, 8.6596e-05, 7.4989e-05, 6.4938e-05, 5.6234e-05, 4.8697e-05,
                4.2170e-05, 3.6517e-05, 3.1623e-05, 2.7384e-05, 2.3714e-05, 2.0535e-05,
                1.7783e-05, 1.5399e-05, 1.3335e-05, 1.1548e-05
            ], device=torch_device
        )
        # fmt: on

        # input sanity checks: if these change, the output will also change
        config = LlamaConfig()
        self.assertEqual(config.rope_scaling, None)
        self.assertEqual(config.hidden_size, 4096)
        self.assertEqual(config.num_attention_heads, 32)
        self.assertEqual(config.rope_theta, 10000.0)
        self.assertFalse(hasattr(config, "partial_rotary_factor"))

        rope_fn = ROPE_INIT_FUNCTIONS["default"]
        default_inv_freq, _ = rope_fn(config=config, device=torch_device)

        # Check 1: `attention_factor` is always 1
        rope_fn = ROPE_INIT_FUNCTIONS["llama3"]
        for factor in (2.0, 10.0, 20.0):
            config.rope_scaling = {
                "rope_type": "llama3",
                "factor": factor,
                "original_max_position_embeddings": 2048,
                "low_freq_factor": 1,
                "high_freq_factor": 4,
            }
            _, attention_scale = rope_fn(config=config, device=torch_device)
            self.assertEqual(attention_scale, 1.0)

        # Check 2: based on `low_freq_factor` and `high_freq_factor`, the frequencies will be scaled between 1 and
        # `factor` (similar to yarn). Low frequencies get scaled by `factor`, high frequencies see no change, medium
        # frequencies are scaled by a value in between. Changing `low_freq_factor` and `high_freq_factor` changes what
        # is considered low, medium, and high frequencies.
        factor = 10.0
        config.rope_scaling = {
            "rope_type": "llama3",
            "factor": factor,
            "original_max_position_embeddings": 2048,
            "low_freq_factor": 1,
            "high_freq_factor": 4,
        }
        inv_freq, _ = rope_fn(config=config, device=torch_device)
        is_bounded_by_factor = [
            (default_inv_freq[idx] / factor) <= llama3_inv_freq_value <= default_inv_freq[idx]
            for idx, llama3_inv_freq_value in enumerate(inv_freq)
        ]
        self.assertTrue(all(is_bounded_by_factor))

        # if we change `high_freq_factor` to a very high value, none is considered high-frequency -> ALL values will be
        # scaled
        config.rope_scaling = config.rope_scaling = {
            "rope_type": "llama3",
            "factor": factor,
            "original_max_position_embeddings": 2048,
            "low_freq_factor": 1,
            "high_freq_factor": 1000,
        }
        inv_freq, _ = rope_fn(config=config, device=torch_device)
        is_scaled = [yarn_inv_freq_value < default_inv_freq[idx] for idx, yarn_inv_freq_value in enumerate(inv_freq)]
        self.assertTrue(all(is_scaled))

        # Check 3: numerical snapshot to avoid regressions
        config.rope_scaling = {
            "rope_type": "llama3",
            "factor": factor,
            "original_max_position_embeddings": 2048,
            "low_freq_factor": 1,
            "high_freq_factor": 4,
        }
        inv_freq, _ = rope_fn(config=config, device=torch_device)
        torch.testing.assert_close(inv_freq, EXPECTED_INV_FREQ)